Balloons• Islam. Prayer Times \rightarrow Nightvision-Mode

Select start of calculation:

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

Space Calendar:

- Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
- NASA TV Guide

Local Telescope Dealers
\square Public Holidays
\square Saint's Day
\square Zodiac of today.
Change of Zodiac Islamic, Indian,

- Persian and Hebrew Calendar
- Week Number

General events

Lunar Occultations (2 months)
Planetary Conjunctions
0 Lunar Eclipses Solar Eclipses and Transits
■ Meteor Streams Planetary Phenomena
回 Lunar Phenomena

- The Sun Asteroids (6 months)
\square Comets

Earth orbiting

 satellitesSpace Station ISS (1 month)
short duration

- Flares of Iridium satellites (14 days) Passes of other
- bright satellites (7 days, slow!)

Daily reoccurring

 events- Sun and Moon
- Planets
- Asteroids
- Comets
- Meteor Streams
\square Polar Star Transits

Dimmer and more

 difficult objectsJupiter: Great Red
\square Spot and satellite events
Jupiter's Satellites: position
Saturn: Satellite events and storms Saturn's Satellites: position Zodiacal light/Gegenschein Variable Stars (3 months)
\square Supernovae
\square Binary Stars
Deep sky objects

Sundials / GPS
\square Time / Current
Time Definitions
\square Julian Day Number
\square Sidereal Time
Local Magnetic
Field
\square Weather Balloons \quad Milky Way
\square Galaxies
\square Open Star Clusters
Globular Star
Clusters
\square Nebula

Tuesday 5 June 2012

Time (24-hour clock)	Object (Link)	Event
5	Observer Site	St Maixent, France WGS84: Lon: -1d49m18.9s Lat: +46d44m27.1s Alt: 65m All times in CET or CEST (during summer)
\%	Local Date	Day of Year (DOY): 157 Week of Year (WOY): 23
(8) 0 h 00 m 00 s	$\begin{aligned} & \frac{\text { ALOS }}{(28931} \\ & \frac{2006-002-\mathrm{A})}{} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(8) 0h00m00s	$\underline{\text { Lacrosse }}$$\frac{\text { 4 Rocket }}{}$$\frac{(26474}{2000-047-\mathrm{B})}$$\rightarrow$ Ground track \rightarrow Star chart	
0.0h	δ^{*} Mars	Magnitude $=0.6$ mag Best seen from $22.6 \mathrm{~h}-2.8 \mathrm{~h}$ ($\mathrm{h}_{\text {top }}=41^{\circ}$ at SW at 22.6 h) (in constellation Leo) RA $=11 \mathrm{~h} 10 \mathrm{~m} 39 \mathrm{~s}$ Dec $=+6^{\circ} 22.6^{\prime}$ (J2000) Distance $=1.219 \mathrm{AU}$ Elongation= 92° Phase $\mathbf{k}=88 \%$ Diameter=7.7" planetographic latitude of the Earth $=25.8^{\circ}$
* 0.0 h	7 Saturn	Magnitude $=0.5 \mathrm{mag}$ Best seen from 22.6h-4.2h ($\mathrm{h}_{\text {top }}=37^{\circ}$ at S at 22.7 h) (in constellation Virgo) $R A=13 \mathrm{~h} 28 \mathrm{~m} 48 \mathrm{~s}$ Dec $=-6^{\circ} 26.3^{\prime}$ (J2000) Distance=9.073AU Elongation=128 ${ }^{\circ}$ Diameter=18.2" planetocentric latitude of the Earth $=12.6^{\circ}$
(8) 0 h 02 m 31 s	$\underline{\text { Cosmos }}$ $\underline{\text { Rocket }}$ (10861 1978-045-B) \rightarrow Ground track \rightarrow Star chart	

5	0h03m08s	$\begin{array}{\|l} \text { Tiangong-1 } \\ \hline \mathbf{3 7 8 2 0} \\ \hline \mathbf{2 0 1 1 - 0 5 3 - A)} \\ \hline \rightarrow \text { Ground track } \\ \hline \rightarrow \text { Star chart } \\ \hline \hline \end{array}$	Appears $23 \mathrm{~h} 58 \mathrm{~m} 39 \mathrm{~s} \quad 4.6 \mathrm{mag}$ az:262.20 $\mathrm{W} \quad$ horizon Disappears $\quad 0 \mathrm{~h} 03 \mathrm{m08s} \quad 0.7 \mathrm{mag}$ SSW $\mathrm{h}: 33.197 .7^{\circ}$ Time uncertainty of about 6 seconds Time uncertainty of about 6 seconds
(3)	0h05m36s	CJ 11-03 $\underline{\text { Rocket }}$ (37731 2011-030-B) \rightarrow Ground track \rightarrow Star chart	
(5)	Oh13m13s	194/NOSS 3-4A (31701 $2007-027-A)$ \rightarrow Ground track \rightarrow Star chart	
(3)	0h13m20s	USA $194-2 /$ NOSS 3-4C $\frac{(31708}{2007-027-C)}$ $\frac{\rightarrow \text { Ground track }}{\rightarrow \text { Star chart }}$	
5	0h19m22s	$\underline{\frac{\text { Terra }}{(25994}}$ $\frac{\text { 1999-068-A) }}{\rightarrow \text { Ground track }}$ \rightarrow Star chart	
(3)	0h27m05s	*2* Iridium 82	Flare from MMA1 (Right antenna) Magnitude=-0.1mag Azimuth $=21.8^{\circ}$ NNE altitude= 11.0° in constellation Cassiopeia Flare angle=1.220 Flare center line, closest point \rightarrow MapIt: Longitude $=0.954{ }^{\circ} \mathrm{W}$ Latitude $=+46.641^{\circ}$ (WGS84) Distance $=67.1 \mathrm{~km}$ Azimuth $=99.2^{\circ} \mathrm{E}$ Satellite above: longitude $=13.1^{\circ} \mathrm{E}$ latitude $=+61.7^{\circ}$ height above Earth=786.9 km distance to satellite $=2176.0 \mathrm{~km}$ Altitude of Sun=-17.20
(3)	0h29m55s	ISS \rightarrow Ground track chart \rightarrow Star	Appears $0 h 29 \mathrm{~m} 55 \mathrm{~s}$ -2.4 mag $\mathrm{az}: 84.5^{\circ}$ $\mathrm{E} \quad \mathrm{h}: 19.7^{\circ}$ Disappears $0 h 33 \mathrm{~m} 15 \mathrm{~s}$ -0.2 mag $\mathrm{az}: 66.8^{\circ}$ ENE horizon
5	0h34m15s	182/Lacrosse 5	Appears $0 h 27 \mathrm{~m} 13 \mathrm{~s}$ 6.5 mag $\mathrm{az}: 275.1^{\circ}$ W horizon Culmination $0 h 34 \mathrm{~m} 15 \mathrm{~s}$ $\mathbf{5 . 2 m a g}$ $\mathrm{az}: 346.9^{\circ}$

	$\begin{aligned} & \frac{(28646}{2005-016-A)} \\ & \frac{\rightarrow \text { Ground track }}{\rightarrow \text { Star chart }} \end{aligned}$	
(3) 0h39m	() Sun	End astronomical twilight
3) 0 h 44 m 13 s	$\underline{\text { Cosmos }}$ Rocket (11683 $1980-008-B)$ \rightarrow Ground track \rightarrow Star chart	

17 Items/Events: Export to Outlook/iCal Br $_{\text {Print }}$
Used satellite data set is from 2 June 2012

\square Hide glossary

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

Astronomical Twilight

The times are the moments of beginning/end of the astronomical twilight, i.e., the moments the Sun reaches a depression of 18° below the horizon. If the Sun is below this angle, no brightening of the sky can be observed.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Best seen between / $h_{\text {max }}$

Cloudspotting 2013
Calendar
Cloud Appreciation...
Nouveau EUR 12,39
1er Prix EUR 7,15

Astronomy and Empire in the Ancient ...
Brian S. Bauer, Da...
Astronomy 2011 Calendar Terence Dickinson

Moleskine 2012 Daily Planner Sky Blu... Moleskine
$\frac{\text { Cal } 97 \text { Spirit of the Sky }}{\text { Abrams }}$ Abrams

A propos de cet espace

This is the best visibility time interval of the object. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\text {max }}$ is the maximum altitude over the horizon, that the object reaches during this time
period.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.
Diameter
Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Elongation

The elongation is the angular separation of the (ecliptic) longitudes of a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.
Flare angle
The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).
Flare
The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

Iridium

Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission Antennas MMA (the three panels in the bottom of the image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.l Visual
limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top

This material is ©1998-2012 by Arnold Barmettler (Imprint).
Hard copies may be made for personal use only. No electronic

Create new default account/Login

 copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.Happy User Donation

Software Version: 21 September 2012
Database updated 1 min ago Current Users: 300

24 Sep 2012, 7:28 UTC 28 minutes left for this session

Balloons• Islam. Prayer Times \rightarrow Nightvision-Mode

Select start of calculation:

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

Space Calendar:

- Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
回 NASA TV Guide
Local Telescope Dealers
\square Public Holidays
\square Saint's Day
(1) Zodiac of today.

Change of Zodiac Islamic, Indian,
\square Persian and Hebrew Calendar

- Week Number

General events

Lunar Occultations (2 months)
Planetary Conjunctions
0 Lunar Eclipses Solar Eclipses and Transits
■ Meteor Streams Planetary Phenomena
回 Lunar Phenomena

- The Sun Asteroids (6 months)
\square Comets

Earth orbiting

 satellitesSpace Station ISS (1 month)
short duration

- Flares of Iridium satellites (14 days) Passes of other
\square bright satellites (7 days, slow!)
Daily reoccurring events
- Sun and Moon
- Planets
- Asteroids
- Comets

■ Meteor Streams
\square Polar Star Transits

Dimmer and more

 difficult objects Jupiter: Great Red\square Spot and satellite events
Jupiter's Satellites: position
Saturn: Satellite events and storms Saturn's Satellites: position Zodiacal light/Gegenschein Variable Stars (3 months)
\square Supernovae
\square Binary Stars
Deep sky objects

Sundials / GPS
\square Time / Current
Time Definitions
Julian Day Number
Sidereal Time
Local Magnetic
Field
\square Weather Balloons \quad Milky Way
\square Galaxies
Open Star Clusters
Globular Star
Clusters
Nebula

Saturday 12 May 2012

13 Items/Events: Export to Outlook/iCal 回Print
Used satellite data set is from 12 May 2012
\square Hide glossary

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Best seen between / $h_{\text {max }}$

This is the best visibility time interval of the object. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\max }$ is the maximum altitude over the horizon, that the object reaches during this time period.

Conjunction

The object shows the closest angular separation from the Sun for this orbit.

Dawn and Dusk: nautical Twilight

In CalSky, is taken as the moments of nautical twilight, i.e., the moments the Sun reaches a depression of 12° below the horizon. Not astronomically trained people will recognize the brightening of the horizon at these times.

Économisez sur tous les produit les produit
SUNSETS AND SKY
Astronomical Calendar 2007

Dec., declination, DE
One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.
Diameter
Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

Elongation

The elongation is the angular separation of the (ecliptic) longitudes of a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

Flare angle

The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).

Flare

The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

Iridium

Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission Antennas MMA (the three panels in the bottom of the
image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\ Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

Moon sign

The position of the Moon within a part of the Zodiac that is subdivided into 30° wide segments. Besides this sign of the zodiac the angle within the sign is given as well.

Opposition

An outer planet (orbit outside the orbit of Earth around the Sun) apparently stands opposite the Sun. Hence, it can be observed throughout the night.

Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.
R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Spare satellite or unknown status

Not all Iridium satellites are operational. Some of them are spare satellites and are in a fuel save mode. Hence the attitude of the satellite is not as strictly stabilized as for operational ones. Predictions of the flare's brightness are not that accurate in this case, a no-show is also possible.

Sun sign

The position of the Sun within a part of the Zodiac that is subdivided into 30° wide segments. Besides this sign of the zodiac the angle within the sign is given as well.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The
difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Zodiac Sign

The zodiac is a band of about 8° width on both sides of the ecliptic, within which the Sun, the Moon and the planets reside. The zodiac is divided into 12 equally spaced, 30° long sections, called signs that are used in astrology. The signs corresponded to the actual constellations about two millenniums ago, but drifted by about one sign since then due to precession.

Top

This material is ©1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic

Create new default account/Login copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 21 September 2012
Database updated 16 min ago Current Users: 280

24 Sep 2012, 7: 19 UTC 37 minutes left for this session

Balloons• Islam. Prayer Times
\rightarrow Nightvision-Mode

Select start of calculation:

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

Space Calendar:

- Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
回 NASA TV Guide
Local Telescope Dealers
\square Public Holidays
\square Saint's Day
(Zodiac of today.
Change of Zodiac Islamic, Indian,
- Persian and Hebrew Calendar
- Week Number

General events

Lunar Occultations (2 months)
Planetary Conjunctions
0 Lunar Eclipses Solar Eclipses and Transits

- Meteor Streams Planetary Phenomena
回 Lunar Phenomena
- The Sun Asteroids (6 months)
\square Comets

Earth orbiting

 satellitesSpace Station ISS (1 month)
short duration

- Flares of Iridium satellites (14 days) Passes of other
$\square \quad$ bright satellites (7 days, slow!)
Daily reoccurring events
- Sun and Moon
- Planets
- Asteroids
- Comets
- Meteor Streams
\square Polar Star Transits

Dimmer and more

 difficult objectsJupiter: Great Red
\square Spot and satellite events
Jupiter's Satellites: position
Saturn: Satellite events and storms Saturn's Satellites: position Zodiacal light/Gegenschein Variable Stars (3 months)
\square Supernovae
\square Binary Stars
Deep sky objects

Sundials / GPS
\square Time / Current
Time Definitions
Julian Day Number

- Sidereal Time

Local Magnetic
Field
\square Weather Balloons \quad Milky Way
\square Galaxies

- Open Star Clusters

Globular Star
Clusters
Nebula

Tuesday 15 May 2012

			$2 \circ^{\circ} 45^{\prime} 36.2 "$ Neptune Quintile Aszendent $22^{\circ} 09^{\prime} 34.4 "$ Neptune Sesquisquare MC $2^{\circ} 06^{\prime} 00.0^{\prime \prime}$
(3)	23.5h	9 Venus	Magnitude=-4.4mag Best seen from $21.6 \mathrm{~h}-0.3 \mathrm{~h}$ ($\mathrm{h}_{\text {top }}=24^{\circ}$ at WNW at 21.6 h) (in constellation Taurus) $R A=5 \mathrm{~h} 32 \mathrm{~m} 13 \mathrm{~s} \quad \mathrm{Dec}=+27^{\circ} 16.4^{\prime} \quad \text { (J2000) }$ Distance=0.351AU Elongation= 290 Phase k=13\% Diameter=47.5"
(s)	23.5h	σ^{*} Mars	Magnitude $=0.3 \mathrm{mag}$ Best seen from 22.2h-4.0h ($\mathrm{h}_{\text {top }}=51^{\circ}$ at SSW at 22.2 h) (in constellation Leo) RA=10h44m07s Dec= +9042.7' (J2000) Distance=1.059AU Elongation=104。 Phase $k=89 \%$ Diameter=8.8" planetographic latitude of the Earth $=24.6^{\circ}$
(3)	23.5h	h Saturn	Magnitude= 0.4mag Best seen from 22.2h - 5.6h $\left(h_{\text {top }}=36^{\circ}\right.$ at S at 0.1 h$)$ (in constellation Virgo) $\mathrm{RA}=13 \mathrm{~h} 32 \mathrm{~m} 24 \mathrm{~s}$ Dec $=-6^{\circ} 43.3^{\prime} \quad(\mathrm{J} 2000)$ Distance $=8.854 \mathrm{AU}$ Elongation= 148° Diameter=18.7" planetocentric latitude of the Earth=12.90
(3)	23.5h	Deep-Sky Observing	Best time interval for observing dim objects: 23.4h-4.7h Prior to midnight
(3)	23 h 39 ml 10 s	** Metop A	Flare from fixed mounted left looking ASCAT Magnitude $=0.7 \mathrm{mag}$ Azimuth $=337.0^{\circ}$ NNW altitude $=7.6^{\circ}$ in constellation Perseus Flare angle=3.34 ${ }^{\circ}$ (Flare center not on earth) Satellite above: longitude $=23.1^{\circ} \mathrm{W}$ latitude $=+66.8^{\circ}$ height above Earth $=830.7 \mathrm{~km}$ distance to satellite $=2822.8 \mathrm{~km}$ Altitude of Sun=-16.60 This is an experimental flare prediction. Brightness estimate may be unreliable. Please report a successful observation (Object/site coordinates/date/measured time/accuracy/magnitude).
(3)	23h45m	Moon	Enters Moon sign Aries $\boldsymbol{\gamma}$
(\$)	23 h 55 m	() Sun	End astronomical twilight

Wednesday 16 May 2012

Time (24-hour clock)	Object (Link)	Event
* 0h04.2m	h Saturn	Transit Altitude $=+36.5^{\circ}$ (in constellation Virgo) Elongation $=148.5^{\circ}$ East, Magnitude $=0.4 \mathrm{mag}$
(8) 0h16m46s	\% Iridium 50	Flare from MMA1 (Right antenna) Magnitude=-2. 8 mag Azimuth $=31.1^{\circ}$ NNE altitude $=16.7^{\circ}$ in constellation Lacerta Flare angle $=0.58^{\circ}$ Flare center line, closest point \rightarrow MapIt: Longitude $=2.240^{\circ} \mathrm{W}$ Latitude $=+46.786^{\circ}$ (WGS84) Distance=32.2 km Azimuth=279.1 ${ }^{\circ} \mathrm{W}$ Satellite above: longitude $=12.8^{\circ} \mathrm{E}$ latitude $=+59.1^{\circ}$ height above Earth=786.4 km distance to satellite $=1943.3 \mathrm{~km}$ Altitude of Sun=-19.90
* 0 h 21.5 m	9 Yenus	Set Azimuth=312.80, NW (in constellation Taurus)

$\square \quad$ Hide glossary

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Astronomical Twilight

The times are the moments of beginning/end of the astronomical twilight, i.e., the moments the Sun reaches a depression of 18° below the horizon. If the Sun is below this angle, no brightening of the sky can be observed.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Best seen between / $h_{\text {max }}$

This is the best visibility time interval of the object. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\max }$ is the maximum altitude over the horizon, that the object reaches during this time period.

Conjunction

The object shows the closest angular separation from the Sun for this orbit.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

Elongation

The elongation is the angular separation of the (ecliptic) longitudes of a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.
Flare angle
The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).

Flare

The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

Iridium

Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission Antennas MMA (the three panels in the bottom of the
image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\ Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

Moon sign

The position of the Moon within a part of the Zodiac that is subdivided into 30° wide segments. Besides this sign of the zodiac the angle within the sign is given as well.

Opposition

An outer planet (orbit outside the orbit of Earth around the Sun) apparently stands opposite the Sun. Hence, it can be observed throughout the night.

Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.
R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Rise, Transit, Culmination, Set

Rise and set times are for a mathematical horizon. Transit is the moment when the celestial object crosses the south meridian (for the northern hemisphere, north otherwise), i.e., it stands exactly in south (north) direction. There it reaches (for objects other than stars: almost) its highest point on its diurnal journey. Culmination is the event of the highest point. Times are listed only if they fall within the chosen interval, starting at the start time. Missing values indicate that the event does not take place at the underlying interval.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Sun sign

The position of the Sun within a part of the Zodiac that is subdivided into 30° wide segments. Besides this sign of the zodiac the angle within the sign is given as well.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid
corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Zodiac Sign

The zodiac is a band of about 8° width on both sides of the ecliptic, within which the Sun, the Moon and the planets reside. The zodiac is divided into 12 equally spaced, 30° long sections, called signs that are used in astrology. The signs corresponded to the actual constellations about two millenniums ago, but drifted by about one sign since then due to precession.

Top

This material is ©1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Happy User Donation

Software Version: 21 September 2012
Database updated 21 min ago Current Users: 300

24 Sep 2012, 7:23 UTC 33 minutes left for this session

