$\rightarrow$ Nightvision-Mode
Select start of calculation:



## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

## Calendar and <br> Timekeeping

Space Calendar:

- Birthdays, Rocket

Launches
Local Events
(Talks, Exhibitions)

- NASA TV Guide

Local Telescope
Dealers
$\square$ Public Holidays
$\square$ Saint's Day Zodiac of today. Change of Zodiac Islamic, Indian,
$\square$ Persian and Hebrew Calendar
$\square$ Week Number

## General events

Lunar Occultations (2 months)
Planetary Conjunctions

- Lunar Eclipses Solar Eclipses and Transits
■ Meteor Streams Planetary Phenomena
$\square$ Lunar Phenomena
回 The Sun Asteroids (6 months)
$\square$ Comets

| Earth orbiting satellites | Dimmer and more difficult objects |
| :---: | :---: |
| Space Station ISS (1 month) short duration | Jupiter: Great Red <br> $\square$ Spot and satellite events |
| - Flares of Iridium satellites (14 days) | Jupiter's Satellites: position |
| Passes of other <br> - bright satellites (7 days, slow!) | Saturn: Satellite events and storms Saturn's Satellites: |
| Daily reoccurring events | position <br> Zodiacal |
| 0 Sun and Moon | light/Gegenschein |
| ® Planets | Variable Stars (3 |
| ( Asteroids | months) |
| - Comets | $\square$ Supernovae |
| $\square$ Meteor Streams | $\square$ Binary Stars |
| $\square$ Polar Star Transits | Deep sky objects |
| $\square$ Weather Balloons |  |

## Earth orbiting satellites <br> Dimmer and more

- Space Station ISS (1 month) short duration
- Flares of Iridium satellites (14 days) Passes of other
bright satellites (7 days, slow!)


## Daily reoccurring events

Sun and Moon
■ Planets

- Asteroids
- Comets
- Meteor Streams
$\square$ Weather Balloons

Jupite Great Red events
Jupiter's Satellites: position Saturn: Satellite events and storms Saturn's Satellites: position Zodiacal light/Gegenschein Variable Stars (3 months)
$\square$ Supernovae
$\square$ Binary Stars

Sundials / GPS
$\square$ Time / Current
Time Definitions
$\square$ Julian Day Number
$\square$ Sidereal Time
Local Magnetic
Field
$\square$ Milky Way
$\square$ Galaxies
$\square$ Open Star Clusters
Globular Star
Clusters
$\square$ Nebula

Thursday 23 August 2012

| $\begin{aligned} & \text { Time (24-hour } \\ & \text { clock) } \end{aligned}$ | Object (Link) | Event |
| :---: | :---: | :---: |
| (3) | Observer Site | lyon, France WGS84: Lon: +4d50m08.4s Lat: +45d45m50.6s Alt: 229m All times in CET or CEST (during summer) |
| (8) 22h30m00s | 99025CVT <br> $\mathbf{( 3 2 2 2 1}$ <br> $\mathbf{1 9 9 9 - 0 2 5 - C V T )}$ <br> Ground track <br> Star chart |  |
| (3) 22.5 h | $\delta^{*}$ Mars | Magnitude $=1.2 \mathrm{mag}$ Best seen from $21.1 \mathrm{~h}-22.5 \mathrm{~h}$ ( $\mathrm{h}_{\text {top }}=14^{\circ}$ at SW at 21.1 h ) (in constellation Virgo) RA $=13 \mathrm{~h} 50 \mathrm{~m} 52 \mathrm{~s}$ Dec $=-11^{\circ} 51.2^{\prime}$ ( J 2000 ) <br> Distance $=1.760 \mathrm{AU}$ Elongation $=59^{\circ}$ Phase $k=90 \%$ Diameter=5.3" planetographic latitude of the Earth $=21.7^{\circ}$ |
| (8) 22.5 h | 7 Saturn | ```Magnitude= 0.8mag Best seen from 21.1h -22.6h (htop =15' at WSW at 21.1h) (in constellation Virgo) RA=13h37m20s Dec= -7037.2' (J2000) Distance=10.311AU Elongation= 54\circ Diameter=16.0" planetocentric latitude of the Earth=13.8\circ``` |
| (8) 22.5 h | Deep-Sky Observing | Best time interval for observing dim objects: 22.2h-5.4h <br> Prior to midnight |
| (3) 22h30m11s | $\quad \underline{\text { USA }}$ $\underline{129 / \mathrm{KH}}$ $\frac{12-3}{\frac{(24680}{1996-072-A)}}$ $\frac{\square \text { Ground track }}{\rightarrow \text { Star chart }}$ $\rightarrow$ Sar |  |
| (83 22 h 35.4 m | $0^{*}$ Mars | Set Azimuth $=253.4^{\circ}$, WSW (in constellation Virgo) |
| * 22h40.0m | 7 Saturn | Set Azimuth $=259.5^{\circ}$, W (in constellation Virgo) |
| (3) 22h43m19s | USA <br> 182/Lacrosse 5 <br> $(28646$ <br> $2005-016-A)$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |


|  |  |  | horizon |
| :---: | :---: | :---: | :---: |
| S | 22h46m59s | $\underline{\text { USA }}$ $\frac{(28888}{} \underline{186 / K H}$ $\frac{2005-042-A)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  |
| (8) | 22h55m51s | $\quad \frac{\text { Cosmos }}{1666}$ $\frac{(15889}{}$ $\frac{1985-058-\mathrm{A})}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart | Appears 22h55m51s 3.3 mag $\mathrm{az}: 94.2^{\circ}$ <br> $\mathrm{E} \quad \mathrm{h}: 73.6^{\circ}$    <br> Disappears 23h01m58s 8.0 mag $\mathrm{az}: 11.1^{\circ}$ <br> $\mathrm{N} \quad \mathrm{horizon}$    |
| (3) | 22h58m17s | $\underline{\text { Rocket }} \underline{\text { H2A }}$ <br> $\frac{\text { IG6105 }}{2009-066-B)}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| 85 | 23h00m09s | $\rightarrow$ ISS $\rightarrow$ Star chart | Appears 22 h 55 m 56 s 1.7 mag $\mathrm{az}: 288.2^{\circ}$ <br> WNW horizon    <br> Disappears <br> WSW h:16.80 $23 \mathrm{~h} 00 \mathrm{m09s}$ -1.6 mag $\mathrm{az}: 239.1^{\circ}$ |
| (3) | 23h01m16s |  |  |
| S | 23h04m52s | $\underline{\text { USA }}$ $\underline{216 / S B S S}$ $\frac{1}{(37168}$ $\frac{2010-048-A)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  |
| (3) | 23.3h | §Uranus | Magnitude $=5.7 \mathrm{mag} \quad$ Best seen from $23.3 \mathrm{~h}-5.4 \mathrm{~h}$ $\left(\mathrm{~h}_{\text {top }}=47^{\circ}\right.$ at S at 4.0 h$)$ (in constellation Cetus) RA $=0 \mathrm{~h} 29 \mathrm{~m} 28 \mathrm{~s}$ Dec $=+2^{\circ} 22^{\circ} .^{\prime} \quad(\mathrm{J} 2000$ ) Distance $=19.246 \mathrm{AU}$ Elongation $=143^{\circ} \quad$ Diameter $=3.6^{\prime \prime}$ |
| (3) | 23h22m11s | $\frac{\text { Cosmos }}{2428}$ <br> $(31792 \underline{2}$ <br> $2007-029-A)$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |


| 3 | 23h24.3m | Moon | Set Azimuth $=242.0^{\circ}$, WSW (in constellation Libra) |
| :---: | :---: | :---: | :---: |
| 3 | 23h26m15s | $\frac{\text { ALOS }}{(28931}$ $2006-002-\mathrm{A})$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 3 | 23h28m21s | $\frac{\text { E-Star }}{(38079}$ $2012-006-C)$ $\rightarrow$ Ground track $\rightarrow$ Star chart | Appears $23 \mathrm{~h} 23 \mathrm{~m} 47 \mathrm{~s} \quad 5.6 \mathrm{mag}$ NNW horizon Disappears 23h28m21s NNE $\mathrm{h}: 14.7^{\circ}$ Time uncertainty of about 3 seconds |

$$
20 \text { Items/Events: Export to Outlook/iCal } \begin{gathered}
\text { Used satellite data set is from } 22 \text { August } 2012
\end{gathered}
$$

## $\square \quad$ Hide glossary

## Glossary:

## Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

## at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

## Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.

## Best seen between / $h_{\text {max }}$



This is the best visibility time interval of the object. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time


Space 2013 Calendar Scientific America... Nouveau EUR 12,62 1er Prix EUR 6,05

Moleskine 12 Month 2011 Daily Diary ... Moleskine

Astronomy and Empire in the Ancient ...
Brian S. Bauer, Da...
SUNSETS AND SKY E-CALENDAR

SEASONS SCENERY E-CALENDAR

A propos de cet espace (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\max }$ is the maximum altitude over the horizon, that the object reaches during this time period.

## Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is $90^{\circ}$ north.

## Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Elongation

The elongation is the angular separation of the (ecliptic) longitudes of a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

## J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\ Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

## Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.

## R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00h00m00s. The time may also be rounded and given in decimal form: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top
This material is ©1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Happy User Donation

Software Version: 03 September 2012
Database updated 9 min ago Current Users: 206

11 Sep 2012, 7:11 UTC 38 minutes left for this session


