\rightarrow Nightvision-Mode
\rightarrow E-mail \& Alert Manager

Select start of calculation:

Select duration:

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

 Space Calendar:\square Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
$\square \quad$ NASA TV Guide
Local Telescope
Dealers
\square Public Holidays
\square Saint's Day
Zodiac of today. Change of Zodiac Islamic, Indian,

- Persian and Hebrew Calendar
\square Week Number Sundials / GPS Time /
\square Current Time Definitions
\square Julian Day Number
\square Sidereal Time
\square Local Magnetic Field

General events
Lunar Occultations (2 months)
\square Planetary Conjunctions
$\square \quad$ Lunar Eclipses
Solar Eclipses and Transits
\square Meteor Showers
\square Planetary Phenomena
$\square \quad$ Lunar Phenomena
$\square \quad$ The Sun
$\square \quad$ Asteroids (6 months)
\square Comets

Earth orbiting satellites

Space Station ISS (1
month)
short duration Flares of

- Iridium satellites (14 days)
- Passes of other bright satellites (1 day, slow!)

Daily reoccurring events

Graphical night
calendar
\square Sun and Moon
\square Planets
\square Asteroids
\square Comets
\square Meteor Showers
\square Polar Star Transits
\square Weather Balloons

Dimmer and more difficult objects	
	Jupiter: Great Red
\square	Spot and satellite events
\square	Jupiter's Satellites: position
\square	Saturn: Satellite events and storms
\square	Saturn's Satellites: position
\square	Zodiacal light/Gegenschein
\square	Variable Stars (3 months)
\square	Supernovae
	Binary Stars
Deep sky objects	
\square	Star chart
\square	Milky Way
\square	Galaxies
	Open Star Clusters
\square	Globular Star Clusters
	Nebula

Thursday 10 July 2014

Time (24-hour clock)	Object (Link)	Event

(3)		Observer Site	Le Pouliguen, France, France WGS84: Lon: -2d25m31.34s Lat: +47d16m11.47s Alt: 56m All times in CET or CEST (during summer)
38	23h00m14s	$\begin{aligned} & \text { Terra } \\ & \quad(25994 \\ & \text { 1999-068-A) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(8)	23h00m14s		
(3)	23h00m49s		
(3)	23h00m56s		
(3)	23h06m57s	USA 182/Lacrosse 5	Flare from SAR antenna Magnitude= 3.1mag Azimuth=302.8 ${ }^{\circ} \mathrm{WNW}$ altitude= 22.0° in constellation Leo Minor $R A=9 h 38.8 \mathrm{~m} \quad \mathrm{Dec}=+38^{\circ} 00^{\prime}$ Flare angle=15.70 Flare center line, closest point \rightarrow MapIt: Longitude $=7.088^{\circ} \mathrm{W}$ Latitude=+51.262 ${ }^{\circ}$ (WGS84) Distance=557.5 km Azimuth $=324.4^{\circ} \mathrm{NW}$ Peak Magnitude=-0.3mag Satellite above: longitude=15.9${ }^{\circ} \mathrm{W}$ latitude $=+53.3^{\circ}$ height above Earth=720.0 km distance to satellite=1537.4 km Altitude of Sun=-8.8 ${ }^{\circ}$ This is an experimental flare prediction. Brightness estimate may be unreliable. Please report a successful observation (Object/site coordinates/date/measured time/accuracy/magnitude).
3	23h06m59s	Helios 1A Rocket ```(23608 1995-033-D) Ground track ->Star chart```	

			at Meridian Disappears	$\begin{aligned} & \text { 23h07m24s } \\ & \text { 23h13m13s } \end{aligned}$	3.6 mag 6.8 mag	$\begin{aligned} & \text { az:180. } 0^{\circ} \\ & \text { az:194.4 } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { SSW } \end{aligned}$	$h: 71.2^{\circ}$ horizon
88	23h07m58s		Appears horizon Culmination h:48.7 ${ }^{\circ}$ distance: of Sun: -9 ${ }^{\circ}$ Disappears	23h01m27s 23h07m58s 6.0km he angular 23h13m18s	9.0mag 5.0mag ht above city: 7.3mag	$\begin{aligned} & \text { az: } 17.8^{\circ} \\ & \text { az: } 99.4^{\circ} \\ & \text { Earth: } 63 \\ & .52^{\circ} / \mathrm{s} \\ & \text { az: } 178.3^{\circ} \end{aligned}$	NNE E . 9 km S	$\begin{gathered} \text { elevat } \\ \mathrm{h}: 4.7^{\circ} \end{gathered}$
5	23h09m13s	USA $182 /$ Lacrosse 5 $(28646$ $2005-016-A)$ \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination $\mathrm{h}: 31.2^{\circ}$ distance: of Sun: -9 ${ }^{\circ}$ at Meridian Disappears	23h02m07s 23h09m13s 338.9 km h angular ve 23h09m50s 23h16m21s	7.2 mag 5.0mag ght abov city: 4.8 mag 5.7 mag	$a z: 272.4^{\circ}$ az:345.9 ${ }^{\circ}$ Earth: 7 $.34^{\circ} / \mathrm{s}$ az: 0.0° az: 59.4°	W NNW 20.9 N ENE	$\begin{aligned} & \text { h:30.3} \\ & \text { horizon } \end{aligned}$
88	23h11m39s	$\begin{aligned} & \quad \begin{array}{l} \text { Resurs P1 } \\ \quad(39186 \end{array} \\ & 2013-030-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $\mathrm{h}: 11.2^{\circ}$ Culmination $h: 24.8^{\circ}$ distance: of Sun: -9 ${ }^{\circ}$ at Meridian Disappears	23h08m59s 23h11m39s 4.4 km he angular v 23h16m34s 23h16m51s	4.7 mag 4.1mag ht above city: 7.9 mag 8.0 mag	az: 122.5° az: 68.1° Earth: 47 $.46^{\circ} / \mathrm{s}$ az: 0.0° az:359.0 ${ }^{\circ}$	ESE ENE 1.4 km N N	elevat $\mathrm{h}: 1.4^{\circ}$ horizon
88	23h13m03s	Envisat $\quad(27386$ $2002-009-A)$ \rightarrow Ground track \rightarrow Star chart	Appears h:8.9 ${ }^{\circ}$ Culmination h:72.3 ${ }^{\circ}$ distance: of Sun: -9 ${ }^{\circ}$ at Meridian Disappears	23h07m46s 23h13m03s 86.8 km he angular v 23h14m49s 23h20m26s	5.7 mag 3.8 mag ht above ocity: 5.4mag 9.2 mag	az:156.30 az: 72.8° Earth: 77 $.55^{\circ} / \mathrm{s}$ az: 0.0° az:348. 3°	SSE ENE . 0 km N NNW	elevat $h: 40.7^{\circ}$ horizon
88	23h13m32s	-USA 81/SBWASS R3/Singleton 3 (21949 1992-023-A) \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h:67.4 ${ }^{\circ}$ distance: of Sun: -9 ${ }^{\circ}$ Disappears	23h05m54s 23h13m32s 33.9 km he angular v 23h20m38s	9.9 mag 5.3mag ht above ocity: 7.4mag	$\begin{aligned} & \text { az: } 351.5^{\circ} \\ & \text { az: } 268.3^{\circ} \\ & \text { Earth: } 79 \\ & .49^{\circ} / \mathrm{s} \\ & \text { az: } 184.9^{\circ} \end{aligned}$	N W .0km S	$\begin{gathered} \text { elevat } \\ \mathrm{h}: 2.1^{\circ} \end{gathered}$
88	23h14m35s	SPOT 7 $(40053$ 2014-034-A) \rightarrow Ground track \rightarrow Star chart	Appears $h: 10.6^{\circ}$ Culmination $h: 58.6^{\circ}$ distance: of Sun: -10 at Meridian Disappears	23h10m04s 23h14m35s 8.2 km he angular 23h17m25s 23h21m31s	4.6mag 2.9 mag ht above locity: 5.6mag 8.2 mag	$\begin{aligned} & \text { az: } 149.6^{\circ} \\ & \text { az: } 71.5^{\circ} \\ & \text { Earth: } 70^{\circ} \\ & 0.55^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az:350.1 } \end{aligned}$	SSE ENE . 1 km N N	elevat $\mathrm{h}: 23.1^{\circ}$ horizon
88	23h15m13s	$\begin{aligned} & \quad \begin{array}{l} \text { Cosmos } 1939 \\ \quad(19045 \\ 1988-032-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears h:13.9 ${ }^{\circ}$ Culmination h:32.3 ${ }^{\circ}$ distance: of Sun: -10 at Meridian Disappears	23h13m10s 23h15m13s 35.0 km he angular 23h18m48s 23h19m50s	5.0mag 4.1mag ht above locity: 8.1mag 8.9 mag	az: 132.4° az: 71.7° Earth: 360 $0.71^{\circ} / \mathrm{s}$ az: 0.0° az:356.30	SE ENE .1km N N	elevat $\mathrm{h}: 4.6^{\circ}$ horizon

			Time uncertainty of about 9 seconds
5	23h16m33s	$\begin{aligned} & \text { USA } \\ & 217 / \text { STPSat-2 } \\ & (37222 \\ & 2010-062-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
S	23h19m40s	```JSA 222/Fastrac 1 / ST 1 (37227 2010-062-F) Ground track Star chart```	Appears 23h12m48s 13.0 mag az: $334.7^{\circ} \mathrm{NNW}$horizonat Meridian 23h19m11s 6.8 mag az: $0.0^{\circ} \mathrm{N}$$\mathrm{h}: 69.6^{\circ}$Culmination 23h19m40s 6.4 mag az: 64.5° ENE $\mathrm{h}: 80.9^{\circ}$distance: 656.4 km height above Earth: 648.9 km elevationof Sun: -10 angular velocity: $0.64^{\circ} / \mathrm{s}$Disappears 23h23m42s 8.1 mag az: $151.7^{\circ} \mathrm{SSE} \mathrm{h}: 13.5^{\circ}$Time uncertainty of about 31 minutes
(3)	23h21m49s	$\begin{aligned} & \quad \begin{array}{l} \text { Cosmos } 1782 \\ \quad(16986 \\ 1986-074-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	
38	23h22m22s	USA 234/FIA Radar 2 $\left\lvert\, \begin{aligned} & (38109 \\ & 2012-014-A) \end{aligned}\right.$ \rightarrow Ground track \rightarrow Star chart	
S	23h23m23s	**Iridium 53	Flare from MMA1 (Right antenna) Magnitude=-7.1mag Azimuth= $51.1^{\circ} \mathrm{NE}$ altitude= 46.2° in constellation Cepheus $R A=21 \mathrm{~h} 18.0 \mathrm{~m} \quad \mathrm{Dec}=+55^{\circ} 35^{\prime}$ Flare angle $=0.03^{\circ}$ Flare center line, closest point \rightarrow MapIt: Longitude $=2.417^{\circ} \mathrm{W}$ Latitude $=+47.270^{\circ}$ (WGS84) Distance=0.7 km Azimuth $=90.5^{\circ}$ E Peak Magnitude=-7.2mag Satellite above: longitude $=4.6^{\circ} \mathrm{E}$ latitude $=+50.7^{\circ}$ height above Earth=784.6 km distance to satellite=1036.7 km Altitude of Sun=-10.6 ${ }^{\circ}$
(3)	23h28m35s		
15	23h28m53s	$\begin{aligned} & \text { Rosmos } 1263 \\ & \text { Rocket } \\ & (12389 \end{aligned}$	Appears horizon 23 h 23 m 30 s 8.0 mag $\mathrm{az}: 359.5^{\circ} \mathrm{N}$ at Meridian 23 h 23 m 40 s 7.9 mag $\mathrm{az}:$ $0.0^{\circ} \mathrm{N}$

21 Items/Events: Export to Outlook/iCal圆 Print E-mail
Used satellite data set is from 9 July 2014

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09 clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.

Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Flare angle

The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).

Flare

The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

Iridium

Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission Antennas MMA (the three panels in the bottom of the image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\Visual limiting
magnitude is about 6mag, whereas the brightest star Sirius reaches -1.4 mag. The Hubble Space Telescope can image objects as dim as 29mag.

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or $00 \mathrm{~h} 00 \mathrm{m00s}$. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0h00m is midnight, 12h: noon, 18h: 6 pm .)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top

This material is ©1998-2014 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 30 August 2014
Database updated 21 min ago
Current Users: 270

1 Sep 2014, 13:23 UTC
598 minutes left for this session
30 days left in ad-free mode
\rightarrow Nightvision-Mode
\rightarrow E-mail \& Alert Manager

Select start of calculation:

geipan Le Pouliguen, France, France
Easting: -2.4253
Northing: 47.2698
Time zone: CET/
Astronomer
Local Sponsors

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

 Space Calendar:\square Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
$\square \quad$ NASA TV Guide
Local Telescope
Dealers
\square Public Holidays
\square Saint's Day
Zodiac of today.
\square Change of Zodiac Islamic, Indian,
\square Persian and Hebrew Calendar
\square Week Number Sundials / GPS Time /
\square Current Time Definitions
\square Julian Day Number
\square Sidereal Time
\square Local Magnetic Field

General events

Lunar Occultations (2 months)
\square Planetary Conjunctions
$\square \quad$ Lunar Eclipses
Solar Eclipses and
Transits
\square Meteor Showers
\square Planetary Phenomena
\square Lunar Phenomena
$\square \quad$ The Sun
$\square \quad$ Asteroids (6 months)
\square Comets

Earth orbiting satellites
Space Station ISS (1 month) short duration Flares of

- Iridium satellites (14 days)
- Passes of other bright satellites (1 day, slow!)

Daily reoccurring events

Graphical night
calendar
\square Sun and Moon
\square Planets
\square Asteroids
\square Comets
\square Meteor Showers
\square Polar Star Transits
\square Weather Balloons

Dimmer and more difficult objects \quad Jupiter: Great Red \square Spot and satellite events	
\square	Jupiter's Satellites:
position	
\square	Saturn: Satellite events
and storms	
\square	Saturn's Satellites:
position	
\square	Zodiacal
light/Gegenschein	
\square	Variable Stars (3
months)	
\square	Supernovae
\square	Binary Stars
Deep sky objects	
\square	Star chart
\square	Milky Way
\square	Galaxies
\square	Open Star Clusters
\square	Globular Star Clusters
\square	Nebula

Thursday 10 July 2014

Time (24-hour clock)	Object (Link)	Event

(5)		Observer Site	Le Pouliguen, France, France WGS84: Lon: -2d25m31.34s Lat: +47d16m11.47s Alt: 56m All times in CET or CEST (during summer)
(3)	23h45m14s	Echostar 14 Tk ```(36501 2010-010-C)``` \rightarrow Ground track \rightarrow Star chart	
(3)	23h48m45s		
58	23h51m09s	$\begin{aligned} & \text { Cosmos } 1892 \\ & \quad(18421 \\ & 1987-088-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears \quad 23h49m05s 4.7 mag az: $148.9^{\circ} \mathrm{SSE}$ $\mathrm{h}: 21.2^{\circ}$ Culmination $23 \mathrm{~h} 51 \mathrm{m09s}$ 4.0mag az: $92.6^{\circ} \mathrm{E}$ $\mathrm{h}: 38.7^{\circ}$ distance: 804.3km height above Earth: 531.1 km elevation of Sun: -13° angular velocity: $0.56^{\circ} / \mathrm{s}$ Disappears 23h57m02s 8.2 mag az: $16.6^{\circ} \mathrm{NNE}$ horizon
(3)	23h54m23s	Echostar 16 Tk $\left\lvert\, \begin{aligned} & (39010 \\ & 2012-065-C) \end{aligned}\right.$ \rightarrow Ground track \rightarrow Star chart	
(3)	23h55m42s		
	23h58m11s	$\begin{aligned} & \text { ARGOS } \\ & (25634 \\ & 1999-008-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	

Friday 11 July 2014

Time (24-hour clock)	Object (Link)	Event

			Time uncertainty of about 3 seconds
5	0h06m30s	$\begin{aligned} & \quad 12-3 \\ & (24680 \\ & 1996-072-\mathrm{A}) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
58	0h08m05s		
38	0h12m10s	$\begin{aligned} & \text { Rocket } \\ & \begin{array}{l} \text { Ro } 11-03 \\ (37731 \\ 2011-030-B) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	
5	0h13m19s	```e\|USA 160-2/NOSS 3-1C (26907 2001-040-C) \rightarrow G \text { Gound track} Star chart```	
5	0h15m43s	```\|}\mathrm{ Landsat 5 (14780 1984-021-A) ->Ground track Star chart```	
38	0h16m02s	```%Maogan 18 Rocket (39364 2013-059-B) \rightarrow G \text { Ground track} ->Star chart```	
38	0h17m35s	$\begin{aligned} & \text { IGS 1A } \\ & \quad(27698 \\ & 2003-009-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $\mathrm{h}: 12.6^{\circ}$Disappears horizonTime uncertainty of about Tim35s2 minutes
(3)	0h20m03s	$\begin{gathered} \mathrm{H}-2 \mathrm{~A} \mathrm{R/B} \\ (39771 \\ 2014-029-F) \end{gathered}$	Appears $\mathrm{h}: 10.1^{\circ}$$\quad 0 \mathrm{~h} 17 \mathrm{~m} 35 \mathrm{~s} \quad 4.2 \mathrm{mag}$ az: $96.0^{\circ} \mathrm{E}$,

		\rightarrow Ground track \rightarrow Star chart	```h:15.4}\mp@subsup{}{}{\circ distance: 1627.9km height above Earth: 610.4km elevation of Sun: -160 angular velocity: 0.27%/s Disappears 0h25m27s 7.5mag az: 2.30}\textrm{N}\mathrm{ horizon```					
(3)	0h20m59s	$\begin{aligned} & \quad \text { Rocket } \\ & (19275 \\ & 1988-056-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:22.9 ${ }^{\circ}$ at Meridian h:32.7 Culmination distance: 6 of Sun: - 16° Disappears	0h18m15s 0h19m01s 0h20m59s 7.5 km hei angular 0h27m38s	5.0mag 4.5mag 3.7mag ht above locity: 8.9 mag	$\begin{aligned} & \text { az: } 181.9^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 97.4^{\circ} \\ & \text { Earth: } 628 \\ & 0.70^{\circ} / \mathrm{s} \\ & \text { az: } 10.8^{\circ} \end{aligned}$	S S E .7km N	horizon
(3)	0h25m31s	```&Maogan 10 LM Rocket (36835 2010-038-B) \rightarrow \text { Ground track} ->Star chart```	Appears h: 29.1° Culmination h:43.9 ${ }^{\circ}$ distance: 5 of Sun: - 16° Disappears Time uncerta	0h24m25s 0h25m31s 1.8 km hei angular 0h30m23s nty of abo	3.3 mag 3.2 mag ht above locity: 9.5mag t 4 seco	$\begin{gathered} \text { az: } 207.0^{\circ} \\ \text { az: } 259.8^{\circ} \\ \text { Earth: } 387 \\ 0.84^{\circ} / \mathrm{s} \\ \text { az:341.5 } \end{gathered}$ nds	SSW W .0km NNW	elevation horizon
(5)	0h28m33s		Appears h:37.3 ${ }^{\circ}$ Culmination h:72.0 ${ }^{\circ}$ distance: 4 of Sun: - 17° at Meridian Disappears	0h27m20s 0h28m33s 7.4 km hei angular 0h29m50s 0h34m10s	3.6 mag 3.2 mag ht above locity: 5.2mag 9.8 mag	$\begin{aligned} & \text { az: } 149.9^{\circ} \\ & \text { az: } 75.2^{\circ} \\ & \text { Earth: } 474 \\ & 0.91^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 349.6^{\circ} \end{aligned}$	SSE ENE .9km N N	elevation $h: 36.5^{\circ}$ horizon
(s)	0h29m50s		Appears $\text { h: } 25.4^{\circ}$ Culmination h: 84.3° distance: 8 of Sun: -17º at Meridian Disappears	0h26m34s 0h29m50s 9.6 km hei angular 0h30m30s 0h37m41s	3.8 mag 2.9 mag ht above locity: 3.3mag 9.1 mag	$\begin{aligned} & \text { az: } 160.3^{\circ} \\ & \text { az: } 74.1^{\circ} \\ & \text { Earth: } 845 \\ & 0.52^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 347.0^{\circ} \end{aligned}$	SSE ENE .9km N NNW	elevation $h: 69.8^{\circ}$ horizon
(8)	0h30m48s	$\begin{aligned} & \text { Pleiades 1B } \\ & \quad(39019 \\ & 2012-068-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $\mathrm{h}: 21.1^{\circ}$ Culmination $h: 52.1^{\circ}$ distance: 8 of Sun: - 17° Disappears	0h27m49s 0h30m48s 6.5 km hei angular 0h37m45s	4.8 mag 4.1 mag ht above locity: 10.2mag	$\begin{aligned} & \text { az: } 190.7^{\circ} \\ & \text { az: } 260.0^{\circ} \\ & \text { Earth: } 703 \\ & 0.51^{\circ} / \mathrm{s} \\ & \text { az:342.4 } \end{aligned}$	S W .9km NNW	elevation horizon
(3)	0h31m12s		Appears horizon at Meridian h:37.9 ${ }^{\circ}$ Culmination distance: 6 of Sun: - 17° Disappears	0h24m42s 0h29m41s 0h31m12s 5.0km hei angular 0h33m07s	10.4 mag 5.6mag 3.8mag ht above locity: 4.4mag	$\begin{aligned} & \text { az: } 342.4^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 68.9^{\circ} \\ & \text { Earth: } 603 \\ & 0.64^{\circ} / \mathrm{s} \\ & \text { az: } 142.0^{\circ} \end{aligned}$	NNW N ENE . 5 km SE	$\begin{aligned} & \mathrm{h}: 66.0^{\circ} \\ & \text { elevation } \\ & \mathrm{h}: 31.5^{\circ} \end{aligned}$
(s)	0h32m29s	$\begin{array}{r} \text { Terra } \\ \quad(25994 \\ 1999-068-\mathrm{A}) \end{array}$ \rightarrow Ground track \rightarrow Star chart	$\begin{aligned} & \text { Appears } \\ & \text { h:20.6 } \\ & \text { Culmination } \\ & \text { h:49.5 } \\ & \text { distance: } \end{aligned}$	0h29m28s 0h32m29s 0.1 km hei	3.8 mag 3.2 mag t above	$\begin{aligned} & \text { az:192.9 } \\ & \text { az: } 260.5^{\circ} \\ & \text { Earth: } 708 \end{aligned}$	SSW W .6km	elevation

			of Sun: - 17° Disappears	angular ve 0h39m27s	$\begin{array}{r} \text { elocity: } \\ 9.2 \mathrm{mag} \end{array}$	$\begin{aligned} & 0.49^{\circ} / \mathrm{s} \\ & \mathrm{az}: 342.0^{\circ} \end{aligned}$		horizon
(8)	0h33m51s	$\begin{aligned} & \text { U38-B/NOSS-3 6(B) } \\ & (38773 \\ & 2012-048-P) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian $h: 26.0^{\circ}$ Culmination distance: 1888 elevation of Disappears	0h24m41s 0h32m07s 0h33m51s 8.7 km hei Sun: -17 ${ }^{\circ}$ 0h42m45s	10.0 mag 7.2 mag 6.5 mag ight abov angular 7.0mag	$\begin{aligned} & \text { az: } 313.8^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 23.9^{\circ} \\ & \text { e Earth: } 10 \\ & \text { velocity: } \\ & \text { az: } 94.1^{\circ} \end{aligned}$	NW N NNE 094. 0.2 E	$\begin{aligned} & \mathrm{h}: \mathbf{2 8 . 8 ^ { \circ }} \\ & \mathrm{km} \\ & \mathrm{o} / \mathrm{s} \\ & \text { horizon } \end{aligned}$
(5)	0h33m56s		Appears 0 horizon at Meridian 0 h:26.0	0h24m46s 0h32m13s 0h33m56s 1.9 km hei Sun: -17° 0h42m50s	10.0 mag 7.2 mag 6.5 mag ight abov angular 7.0mag	$\begin{aligned} & \text { az: } 313.7^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 23.8^{\circ} \\ & \text { e Earth: } 10 \\ & \text { velocity: } \\ & \text { az: } 94.0^{\circ} \end{aligned}$	NW N NNE 095. 0.2 E	$\begin{aligned} & \mathrm{h}: \mathbf{2 8 . 7 ^ { \circ }} \\ & \mathrm{km} \\ & \% / \mathrm{s} \\ & \text { horizon } \end{aligned}$
5	0h34m34s	```NOSS 3-4 Rocket (31702 2007-027-B) \rightarrow G \text { Ground track} Star chart```		0h26m25s 0h34m34s 9.6 km hei angular ve 0h37m59s	8.8 mag 3.8 mag ght abov locity: 4.2mag	$\begin{aligned} & \text { az: } 315.5^{\circ} \\ & \text { az: } 240.5^{\circ} \\ & \text { e Earth: } 91 \\ & 0.32^{\circ} / \mathrm{s} \\ & \text { az: } 183.4^{\circ} \end{aligned}$	NW WSW 19.7 S	m:22.7
8	0h43m26s		Appears 0 h: 26.8° Culmination 0 h:82.3 distance: 638. of Sun: -18° ang at Meridian 0 Disappears 0	0h41m01s 0h43m26s .5 km heig angular ve 0h44m35s 0h50m08s	5.3mag 4.3mag ght above locity: 5.5mag 9.7 mag	$\begin{aligned} & \text { az: } 193.3^{\circ} \\ & \text { az: } 279.3^{\circ} \\ & \text { Earth: } 633 \\ & 0.70^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 9.1^{\circ} \end{aligned}$	SSW W .3k N N	$\begin{aligned} & \text { h:49.7º } \\ & \text { horizon } \end{aligned}$

33 Items/Events: Export to OutlookiCal回 Print E-mail
Used satellite data set is from 9 July 2014
\square Hide glossary

Glossary:

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09 clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.

Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or $00 \mathrm{~h} 00 \mathrm{m00s}$. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0h00m is midnight, 12h: noon, 18h: 6 pm.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top
This material is ©1998-2014 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 30 August 2014
Database updated 4 min ago
Current Users: 262, Runtime: 2s

