\rightarrow Nightvision-Mode

Select start of calculation:

\rightarrow E-mail \& Alert Manager

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping	General events
	$\square \quad$ Lunar Occultations (2
Space Calendar:	- months)
$\square \quad$ Birthdays, Rocket	จ Planetary Conjunctions
Launches	\square Lunar Eclipes
\square Local Events (Talks,	$\square \quad$ Lunar Eclipses
Exhibitions)	Solar Eclipses and
$\square \quad$ NASA TV Guide	Transits
\square Local Telescope	\square Meteor Streams
\square Dealers	(Planetary Phenomena
$\square \quad$ Public Holidays	\square Lunar Phenomena
\square Saint's Day	$\square \quad$ The Sun
Zodiac of today. Change of Zodiac	Asteroids (6 months)
Islamic, Indian,	\square Comets
Persian and Hebrew Calendar	
\square Week Number	
Sundials / GPS Time / Current Time Definitions	
\square Julian Day Number	
$\square \quad$ Sidereal Time	
\square Local Magnetic Field	

Daily reoccurring events
\square Sun and Moon
\square Planets
\square Asteroids
\square Comets
\square Meteor Streams
$\square \quad$ Polar Star Transits
\square Weather Balloons

Saturday 7 June 2014

Time (24-hour clock)	Object (Link)	Event

(3)		Observer Site	handschuheim, France WGS84: Lon: +7d43m00.00s Lat: +48d28m00.00s Alt: 192m All times in CET or CEST (during summer)
5	2h30m48s		
58	2h30m48s	$\begin{aligned} & \text { USA } \\ & 3-2 C \quad 173-2 / \text { NOSS } \\ & (28097 \\ & 2003-054-C) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
58	2h30m48s		
(3)	2h31m05s	USA3-3A $(28537$ $2005-004-A)$ \rightarrow Ground track \rightarrow Star chart	
5	2h31m12s	USA $3-3 C$ $181-2 /$ NOSS $(28541$ $2005-004-C)$ \rightarrow Ground track \rightarrow Star chart	
58	2h31m12s		
5	2h31m29s	$$	

			Disappears	2h33m43s	6.5 mag	az:215.6 ${ }^{\circ}$	SW	h:27.9
(3)	2h32m29s	IGS 02 $(29393$ $2006-037-A)$ \rightarrow Ground track \rightarrow Star chart	$\begin{aligned} & \text { Appears } \\ & \text { h:40.2 } \\ & \text { at Meridian } \\ & \text { h:73.6 } \\ & \text { Culmination } \\ & \text { distance: } \\ & \text { of Sun: - } 17^{\circ} \\ & \text { Disappears } \\ & \text { Time uncert } \end{aligned}$	2h31m19s 2h32m11s 2h32m29s 7.0 km hei angular 2h38m05s ty of abo	3.1 mag 2.5 mag 2.6 mag ht above locity: 8.4mag t 5 seco	$\begin{aligned} & \text { az:169.9 } \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 256.7^{\circ} \\ & \text { Earth: } 47 \\ & 0.94^{\circ} / \mathrm{s} \\ & \text { az: } 347.2^{\circ} \\ & \text { nds } \end{aligned}$	S S WSW .2km NNW	h:86. elev horiz
(3)	2h34m25s		Appears $h: 30.6^{\circ}$ Culmination h:69.9 ${ }^{\circ}$ distance: of Sun: -17 Disappears	2h32m21s 2h34m25s 8.6 km hei angular v 2h41m07s	5.0mag 4.4mag ht above locity: 11.1 mag	$\begin{aligned} & \text { az: } 172.4^{\circ} \\ & \text { az: } 96.5^{\circ} \\ & \text { Earth: } 633^{\circ} \\ & 0.67^{\circ} / \mathrm{s} \\ & \text { az: } 12.1^{\circ} \end{aligned}$	S E .0km NNE	eleva horizo
38	2h38m13s	$\begin{aligned} & \text { Cosmos } 1603 \\ & \quad(15333 \\ & 1984-106-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $\mathrm{h}: 26.6^{\circ}$ Culmination $\mathrm{h}: \mathbf{8 2}^{\circ} \mathbf{8}^{\circ}$ distance: of Sun: -17 at Meridian Disappears	2h34m59s 2h38m13s 8.7km hei angular v 2h38m41s 2h46m19s	5.3mag 4.4mag ht above locity: 4.6mag 10.8 mag	$\begin{aligned} & \text { az:211. } 7^{\circ} \\ & \text { az:298.0 } \\ & \text { Earth: } 84 \\ & 0.52^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 28.1^{\circ} \end{aligned}$	SSW WNW .0km N NNE	elevat h:75.0 ${ }^{\circ}$ horizon
3	2h39m20s	```NOSS 3-6 Rocket (38770 2012-048-N) ->Ground track OStar chart```	Appears $\mathrm{h}: 36.6^{\circ}$ at Meridian h:48.3 ${ }^{\circ}$ Culmination distance: of Sun: -17 Disappears	2h37m56s 2h38m29s 2h39m20s 3.2 km hei angular 2h45m14s	$2.4 m a g$ 2.0mag 2.0mag ht above locity: 7.9mag	$\begin{aligned} & \text { az:191.9} \\ & \text { az: } 180.0^{\circ} \\ & \text { az:125. } 2^{\circ} \\ & \text { Earth: } 52 \\ & 0.77^{\circ} / \mathrm{s} \\ & \text { az: } 41.5^{\circ} \end{aligned}$	SSW S SE .4km NE	 horizon
5	2h39m39s	$\begin{aligned} & \quad \begin{array}{l} \text { NOSS } 1 \\ (08884 \end{array} \quad \begin{array}{l} \mathrm{J}) \\ 1976-038-\mathrm{J}) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears horizon at Meridian h: 86.4° Culmination distance: of Sun: -17 Disappears Time uncert	2h34m35s 2h39m36s 2h39m39s 5.3 km hei angular 2h41m10s nty of abo	10.6 mag 5.8 mag 5.7 mag ht above locity: 7.0mag t 25 sec	$\begin{aligned} & \text { az: } 318.4^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 49.5^{\circ} \\ & \text { Earth: } 39 \\ & 1.14^{\circ} / \mathrm{s} \\ & \text { az:138.0 } \\ & \text { onds } \end{aligned}$	NW N NE . 2 km SE	h:87. elev h:27.
(3)	2h43m15s		Appears horizon Culmination h: 66.0° distance: of Sun: -17 Disappears	2h36m41s 2h43m15s 6.6 km hei angular v 2h45m12s	9.2 mag 3.7 mag ht above locity: 4.4mag	$\begin{aligned} & \text { az:347. } 5^{\circ} \\ & \text { az:263.9 } \\ & \text { Earth: } 61 \\ & 0.63^{\circ} / \mathrm{s} \\ & \text { az:191.20 } \end{aligned}$	NNW W .4km S	elevat $h: 31.0^{\circ}$
3	2h45m41s	$$	Appears h:15.6 ${ }^{\circ}$ Culmination h:31.9 ${ }^{\circ}$ distance: of Sun: -17 at Meridian	2h43m41s 2h45m41s .6km hei angular v 2h49m32s	4.4mag 4.2 mag ht above locity: 8.2mag	$\begin{aligned} & \text { az: } 128.2^{\circ} \\ & \text { az: } 71.0^{\circ} \\ & \text { Earth: } 40 \\ & 0.64^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \end{aligned}$	SE ENE . 9 km N	elevat

			Disappears	2h50m34s	8.6 mag	$a z: 356.4^{\circ}$	N	horizon
38	2h47m42s	Egyptsat 2 Rocket $\begin{aligned} & (39679 \\ & 2014-021-B) \end{aligned}$ $\rightarrow \text { Ground track }$ \rightarrow Star chart	Appears h:26.8 ${ }^{\circ}$ at Meridian h:56.3 ${ }^{\circ}$ Culmination distance: 7 of Sun: -17 ${ }^{\circ}$ Disappears	2h45m06s 2h47m09s 2h47m42s 2.8 km he angular 2h55m02s	3.2 mag 2.3 mag 2.3 mag ht above locity: 6.9mag	$\begin{aligned} & \text { az: } 219.7^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az:149.30 } \\ & \text { Earth: } 699 \\ & 0.55^{\circ} / \mathrm{s} \\ & \text { az: } 67.5^{\circ} \end{aligned}$	SW S SSE . 6 km ENE	$h: 60.3^{\circ}$ elevat horizon
38	2h49m59s	$\begin{aligned} & \text { Cosmos } 1626 \\ & \quad(15494 \\ & 1985-009-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h: 27.0° Culmination h:55.2 ${ }^{\circ}$ distance: of Sun: -16° Disappears	2h48m07s 2h49m59s 0.8 km hei angular v 2h55m57s	3.9 mag 3.4 mag ht above locity: 9.9mag	$\begin{aligned} & \text { az: } 162.1^{\circ} \\ & \text { az: } 95.4^{\circ} \\ & \text { Earth: } 527 \\ & 0.71^{\circ} / \mathrm{s} \\ & \text { az: } 13.9^{\circ} \end{aligned}$	SSE E .7km NNE	elevat horizon
3	2h52m13s	$\begin{aligned} & \quad \text { SJ 11-02 } \\ & \quad(37765 \\ & 2011-039-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears h:24.0 at Meridian h:49.2* Culmination distance: 7 of Sun: -16 Disappears```	2h49m19s 2h50m57s 2h52m12s 0.4 km hei angular 2h59m16s	5.6 mag 4.6mag 4.4mag ht above locity: 9.6mag	$\begin{aligned} & \text { az: } 171.9^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 256.4^{\circ} \\ & \text { Earth: } 707 \\ & 0.61^{\circ} / \mathrm{s} \\ & \text { az:345.5 } \end{aligned}$	S S WSW .9km NNW	$h: 78.7^{\circ}$ elevat horizon
5	2h53m47s	```JSA 209/STSS Demo SV-2 (35938 2009-052-B) ->Ground track Star chart```	Appears horizon Culmination h:73.7º distance: elevation at Meridian Disappears	2h42m34s 2h53m47s 98.2 km he Sun: - 16° 2h54m43s 3h04m52s	9.6 mag 6.3mag ght abov angular 6.3mag 8.8 mag	$\begin{aligned} & \text { az:307.7 } \\ & \text { az: } 224.3^{\circ} \\ & \text { e Earth: } 13 \\ & \text { velocity: } \\ & \text { az:180.0 } \\ & \text { az:140.3 } \end{aligned}$	NW SW 52.4 0.29 S SE	$\begin{aligned} & \text { km } \\ & \mathrm{h}: \mathrm{h}^{67.6^{\circ}} \\ & \text { horizon } \end{aligned}$
8	2h55m12s	-USA 240/OTV- $\begin{aligned} & 3 / X-37 B \\ & (39025 \\ & 2012-071-A) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears h:25.5 ${ }^{\circ}$ Disappears horizon	$\begin{aligned} & \text { 2h55m12s } \\ & \text { 2h59m10s } \end{aligned}$	3.5mag 6.4 mag	$\begin{aligned} & \text { az: } 141.4^{\circ} \\ & \text { az: } 102.9^{\circ} \end{aligned}$	SE ESE	
(3)	3h01m37s	$\begin{aligned} & \quad \begin{array}{l} \text { USA 224/KH } \\ \quad(37348 \\ 2011-002-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears $\mathrm{h}: 20.6^{\circ}$ Culmination h:31.2 ${ }^{\circ}$ distance: 1 of Sun: -16° Disappears Time uncerta	2h58m25s 3h01m37s 59.4 km he angular 3h09m43s nty of abo	5.4mag 5.2mag ght abov locity: 8.5 mag 9 seco	$\begin{aligned} & \text { az: } 222.3^{\circ} \\ & \text { az: } 267.1^{\circ} \\ & \text { e Earth: } 99 \\ & 0.25^{\circ} / \mathrm{s} \\ & \text { az:338.8․ } \\ & \text { nds } \end{aligned}$	SW W 7.7k NNW	eleva horizon
(3)	3h03m40s	RocketIGS 6 $(37814$ $2011-050-B)$ \rightarrow Ground track \rightarrow Star chart	Appears h: 28.5° Culmination h:41.8 ${ }^{\circ}$ distance: 8 of Sun: -16° Disappears Time uncerta	3h02m07s 3h03m40s 1.5 km hei angular 3h09m45s nty of abo	3.6 mag 3.3 mag ht above locity: 7.7 mag 2 seco	$\begin{aligned} & \text { az: } 211.7^{\circ} \\ & \text { az:261.6 } \\ & \text { Earth: } 567 \\ & 0.55^{\circ} / \mathrm{s} \\ & \text { az:341.1 } \\ & \text { nds } \end{aligned}$	SSW W . 2 km NNW	elevat horizon

			Disappears	3h19m01s	4.6 mag	$a z: 172.5^{\circ}$	S	$h: 16.3^{\circ}$
(3)	3h21m02s	```NOSS 1 (D) (08836 1976-038-D) ->Ground track Star chart```	Appears horizon Culmination h:36.5 ${ }^{\circ}$ distance: of Sun: -14 Disappears Time uncert	3h16m13s 3h21m02s .7km hei angular 3h21m52s ty of abo	9.6 mag 5.8mag ht above locity: 6.1mag t 25 sec	$\begin{aligned} & \text { az: } 312.5^{\circ} \\ & \text { az: } 234.6^{\circ} \\ & \text { Earth: } 396 \\ & 0.72^{\circ} / \mathrm{s} \\ & \text { az:197.0 } \\ & \text { onds } \end{aligned}$	NW SW . 5 km SSW	elevat $h: 29.7^{\circ}$
(3)	3h21m23s	ISS \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h:34.0 ${ }^{\circ}$ distance: of Sun: -14 at Meridian Disappears	3h16m08s 3h21m23s .1km hei angular 3h22m17s 3h26m37s	-0.2mag -3.5mag ht above locity: -3.2mag $-0.5 \mathrm{mag}$	$\begin{gathered} \text { az:289. } 8^{\circ} \\ \text { az:214.4 } \\ \text { Earth: } 41 \\ 0.63^{\circ} / \mathrm{s} \\ \text { az:180. } \\ \text { az:138.7 } \end{gathered}$	WNW SW . 2 km S SE	$\begin{aligned} & \text { elevat } \\ & \text { h:28.3º } \\ & \text { horizon } \end{aligned}$
(3)	3h26m03s	**Aura	Flare from Magnitude Azimuth=165 constellati RA=19h53.1m Flare angle Flare cente Latitude=+ Azimuth=13 Satellite a above Earth Altitude of This is an estimate ma observation time/accura	DLS(?) In .2mag SSE alt Sagittari Dec=-16ㅇํ 21 21° ine, clos 675° (WGS 7° SE Pe e: longit 7.4 km $n=-14.1^{\circ}$ erimental be unrelia Object/sit magnitude)	trument tude= 24 s st point 4) Dista k Magnit de $=11.6^{\circ}$ stance flare pr ble. Plea coordin	(Test 2) $.0^{\circ}$ in \rightarrow MapIt: L nce=283.0 ude=-2.1ma E latitud o satellit ediction. se report ates/date/	ngit km $e=+39$ =143 Brigh a suc measu	$\text { ude }=10.4$ 9° hei . 0 km ness essful ed
(3)	3h26m54s	```&USA 215/FIA Radar 1 (37162 2010-046-A) \rightarrow \text { Ground track} ->Star chart```	Appears horizon Culmination h: 66.0° distance: elevation at Meridian Disappears	3h17m58s 3h26m54s 96.3 km he Sun: -14 ${ }^{\circ}$ 3h27m24s 3h35m52s	7.1 mag 4.6mag ght abov angular 4.6mag 7.0mag	$\begin{aligned} & \text { az:107.60 } \\ & \text { az: } 25.4^{\circ} \\ & \text { e Earth: } 1 \\ & \text { velocity: } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 303.3^{\circ} \end{aligned}$	ESE NNE 108.5 0.35 N WNW	```m /s h:63.60 horizon```
(5)	3h27m25s	$\begin{aligned} & \text { Yaogan } 14 \\ & \quad(38257 \\ & 2012-021-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $h: 24.8^{\circ}$ Culmination h:36.8 ${ }^{\circ}$ distance: of Sun: -14 Disappears	3h25m55s 3h27m25s 2.9 km hei angular 3h32m55s	4.8 mag 4.4mag ght above locity: 8.6mag	$\begin{aligned} & \text { az: } 213.7^{\circ} \\ & \text { az:262. } 3^{\circ} \\ & \text { Earth: } 48 \\ & 0.59^{\circ} / \mathrm{s} \\ & \text { az:340.4} \end{aligned}$	SSW W . 2 km NNW	elevat horizon
5	3h29m18s	$\begin{aligned} & \text { Astra 2E Tk } \\ & \quad(39287 \\ & 2013-056-C) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon Culmination h:42.9 ${ }^{\circ}$ distance: of Sun: -14 at Meridian Disappears	3h11m00s 3h29m18s 7.1 km he angular 3h30m51s 3h34m18s	$\begin{gathered} \text { 9.1mag } \\ \text { 4.4mag } \\ \text { ight abov } \\ \text { elocity: } \\ \text { 4.3mag } \\ 6.1 \mathrm{mag} \end{gathered}$	$\begin{aligned} & \text { az: } 295.1^{\circ} \\ & \text { az: } 225.7^{\circ} \\ & \text { e Earth: } 9 \\ & 0.38^{\circ} / \mathrm{s} \\ & \text { az:180. } 0^{\circ} \\ & \text { az:143.5 } \end{aligned}$	WNW SW 29.2k S SE	

68	3h31m04s	$\begin{array}{\|l} \\ \quad \begin{array}{l} \text { Cosmos } 1441 \\ (13818 \end{array} \\ 1983-010-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	Appears horizon Culmination $h: 34.6^{\circ}$ distance: 61 of Sun: - 14° Disappears	3h26m18s 3h31m04s 4.1 km heig angular 3h31m59s	8.4mag 3.9mag ht above locity: 4.1mag	$\begin{aligned} & \text { az:340. } 3^{\circ} \\ & \text { az:263.9 } \\ & \text { Earth: } 36 \\ & 0.70^{\circ} / \mathrm{s} \\ & \text { az:224.2 } \end{aligned}$	NNW W .2 km SW	elevation $h: 27.0^{\circ}$
5	3h33m55s	$\begin{array}{\|l} \begin{array}{c} \text { Cosmos } 1943 \\ (19119 \end{array} \\ \text { 1988-039-A) } \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	```Appears h:19.0 at Meridian h:83.8 Culmination distance: 8 of Sun: -13* Disappears```	3h29m44s 3h33m44s 3h33m55s 4.5 km hei angular 3h42m07s	5.2mag 3.9 mag 3.9mag ght above locity: 11.1 mag	$\begin{aligned} & \text { az:204.5 } \\ & \text { az: } 180.0^{\circ} \\ & \text { az:116. } 5^{\circ} \\ & \text { Earth: } 85 \\ & 0.51^{\circ} / \mathrm{s} \\ & \text { az: } 28.8^{\circ} \end{aligned}$	SSW S ESE . 8 km NNE	horizon
5	3h35m31s	$\begin{aligned} & \quad \text { Cosmos } 1782 \\ & \quad(16986 \\ & 1986-074-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:86.8}\mp@subsup{}{}{\circ distance: 55 of Sun: -13* at Meridian Disappears```	3h29m17s 3h35m31s .7km heig angular v 3h35m58s 3h39m01s	8.7 mag 3.5 mag ght above elocity: 3.4mag 5.4 mag	$\begin{aligned} & \text { az:349.6 } \\ & \text { az: } 261.5^{\circ} \\ & \text { Earth: } 55 \\ & 0.76^{\circ} / \mathrm{s} \\ & \text { az:180.0 } \\ & \text { az:173. } 2^{\circ} \end{aligned}$	N W . 1 km S S	elevation $\begin{aligned} & h: 69.2^{\circ} \\ & h: 13.4^{\circ} \end{aligned}$
5	3h36m38s	chostar 16 Tk ```(39010 2012-065-C)``` \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h:58.0 ${ }^{\circ}$ distance: 56 of Sun: - 13° at Meridian Disappears	3h32m41s 3h36m38s . 2 km heig angular v 3h36m50s 3h46m12s	$6.3 \mathrm{mag}$ 3.2 mag ght above locity: 3.3mag 8.5 mag	$\begin{aligned} & \text { az: } 284.6^{\circ} \\ & \text { az:198.9 } \\ & \text { Earth: } 48 . \\ & 0.94^{\circ} / \mathrm{s} \\ & \text { az:180. } 0^{\circ} \\ & \text { az:118.1 } \end{aligned}$	WNW SSW . 1 km S ESE	$h: 56.5^{\circ}$ horizon
5	3h36m48s	USA $\begin{aligned} & 238-\text { B/NOSS-3 6(B) } \\ & (38773 \\ & 2012-048-P) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:7.5 Culmination h:46.9 ${ }^{\circ}$ distance: 1 elevation of at Meridian Disappears	3h29m10s 3h36m48s 63.1km he Sun: -13 3h38m29s 3h46m24s	$\begin{gathered} \text { 6.5mag } \\ 5.4 \mathrm{mag} \\ \text { ight abov } \\ \text { angular } \\ 6.3 \mathrm{mag} \\ 10.8 \mathrm{mag} \end{gathered}$	$\begin{aligned} & \text { az:249.30} \\ & \text { az:324.1 } \\ & \text { e Earth: } 1 \\ & \text { velocity: } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 43.9^{\circ} \end{aligned}$	$\begin{aligned} & \text { WSW } \\ & \text { NW } \\ & 134.51 \\ & 0.29 \\ & \mathrm{~N} \\ & \mathrm{NE} \end{aligned}$	
S	3h36m53s	$\begin{aligned} & \quad \text { USA } \\ & \text { 6(A) } \\ & \begin{array}{l} \text { (} 38758 \\ 2012-048-A) ~ \end{array} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:7.6 ${ }^{\circ}$ Culmination h:47.1 ${ }^{\circ}$ distance: 1 elevation of at Meridian Disappears	3h29m17s 3h36m53s 57.6 km he Sun: -13 ${ }^{\circ}$ 3h38m34s 3h46m29s	6.4mag 5.4 mag ght abov angular 6.2 mag 10.8 mag	$\begin{aligned} & \text { az: } 249.1^{\circ} \\ & \text { az:324.0 } \\ & \text { e Earth: } 1 \\ & \text { velocity: } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 43.9^{\circ} \end{aligned}$	WSW NW 34.0 0.30 N NE	km /s $h: 40.4^{\circ}$ horizon
65	3h39m04s		$\begin{aligned} & \text { Appears } \\ & \text { horizon } \\ & \text { at Meridian } \\ & \text { h:26.4} \\ & \text { Culmination } \\ & \text { distance: } 35 \\ & \text { of Sun: - } 13^{\circ} \\ & \text { Disappears } \\ & \text { Time uncertai } \end{aligned}$	3h34m16s 3h37m43s 3h39m04s .1km heig angular 3h41m03s nty of about	7.8 mag 4.9mag 2.2 mag ght above locity: 3.8mag ut 1 seco	$\begin{aligned} & \text { az: } 352.3^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 80.4^{\circ} \\ & \text { Earth: } 338 \\ & 1.24^{\circ} / \mathrm{s} \\ & \text { az: } 164.3^{\circ} \\ & \text { nds } \end{aligned}$	N N E .5km SSE	$h: 16.2^{\circ}$

58	3h42m57s		Appears horizon Culminatio h: 45.5° distance: of Sun: -1 Disappears	3h35m01s 3h42m57s 34.0 km he angular vel 3h48m16s	6.8 mag 3.2 mag ght abov locity: 4.8mag	$\begin{aligned} & \text { az: } 327.5^{\circ} \\ & \text { az:251.10 } \\ & \text { e Earth: } 85 \\ & 0.37^{\circ} / \mathrm{s} \\ & \text { az:180.1 } \end{aligned}$	NNW WSW 2.2 S	h:10.3
(3)	3h48m18s	$\begin{aligned} & \quad \text { USA } \\ & 3-2 A \\ & (28095 \\ & 2003-054-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:15.6 ${ }^{\circ}$ Culminatio h:83.7 ${ }^{\circ}$ distance: elevation at Meridia Disappears	3h42m56s 3h48m18s 33.8 km he Sun: -12 ${ }^{\circ}$ 3h48m36s 3h57m59s	5.6mag 4.4mag ght abov angular 4.5mag 11.3 mag	$\begin{aligned} & \text { az:223. } 3^{\circ} \\ & \text { az:311.6 } \\ & \text { e Earth: } 10 \\ & \text { velocity: } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 42.2^{\circ} \end{aligned}$	SW NW 28.7 0.42 N NE	m /s h: 80.6° horizon
(3)	3h50m35s	$\begin{aligned} & \quad \begin{array}{l} \text { NOSS } 4(A) \\ (13791 \end{array} \\ & \text { 1983-008-A) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:19.8 ${ }^{\circ}$ at Meridia $h: 86.7^{\circ}$ Culminatio distance: of Sun: -1 Disappears Time uncer	3h48m26s 3h50m32s 3h50m35s 0.6 km hei angular 3h56m09s nty of abo	6.9 mag 5.4mag 5.5mag ht above locity: 13.3 mag ut 4 minu	$\begin{aligned} & \text { az: } 219.1^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 129.7^{\circ} \\ & \text { Earth: } 430 \\ & 1.10^{\circ} / \mathrm{s} \\ & \text { az: } 41.9^{\circ} \\ & \text { tes } \end{aligned}$	SW S SE . 5 km NE	$h: 87.8^{\circ}$ elevat horizon
(5)	3h54m21s	```Haiyang1B LM Rocket (31114 2007-010-B) \rightarrow G \text { Ground track} Star chart```	Appears horizon at Meridia h:75.2 ${ }^{\circ}$ Culminatio distance: of Sun: -1 Disappears	3h46m36s 3h53m53s 3h54m21s 2.3km hei angular 3h59m04s	9.4 mag $3.6 m a g$ $3.3 m a g$ ht above locity: 5.0mag	$\begin{aligned} & \text { az: } 13.2^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az:285. } 8^{\circ} \\ & \text { Earth: 81e } \\ & 0.51^{\circ} / \mathrm{s} \\ & \text { az:198.1 } \end{aligned}$	NNE N WNW .6 km SSW	$\begin{aligned} & \text { h:85.9 } \\ & \text { elevat } \\ & \mathrm{h}: 12.9^{\circ} \end{aligned}$
(3)	3h57m37s	Lacrosse 5 Rocket $\begin{aligned} & (28647 \\ & 2005-016-B) \end{aligned}$ $\rightarrow \text { Ground track }$ \rightarrow Star chart	Appears horizon at Meridia $h: 35.3^{\circ}$ Culminatio distance: of Sun: -1 Disappears Time uncer	3h51m43s 3h57m02s 3h57m37s 3.0 km hei angular 4h03m17s nty of abo	5.6 mag 3.9 mag 4.0mag ght above locity: 6.0 mag ut 1 seco	$\begin{aligned} & \text { az: } 305.2^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 23.7^{\circ} \\ & \text { Earth: } 488 \\ & 0.59^{\circ} / \mathrm{s} \\ & \text { az:102.5 } \\ & \text { nds } \end{aligned}$	NW N NNE . 4 km ESE	h:37.9 ${ }^{\circ}$ elevat horizon
(3)	3h58m18s	```MMeteor 1-29 (11251 1979-005-A) ->Ground track Star chart```	Appears $h: 3.1^{\circ}$ Culminatio $h: 66.9^{\circ}$ distance: of Sun: -1 at Meridia Disappears	3h53m29s 3h58m18s 7.5km hei angular v 3h59m51s 4h03m54s	6.7 mag 4.2 mag ht above locity: 6.2 mag 8.7 mag	$\begin{aligned} & \text { az: } 158.2^{\circ} \\ & \text { az: } 73.9^{\circ} \\ & \text { Earth: } 47 \mathrm{c} \\ & 0.86^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az:349.4 } \end{aligned}$	SSE ENE .3km N N	elevat h:30.6 ${ }^{\circ}$ horizon
(8)	3h59m50s	$\begin{aligned} & \quad \text { ZY } 1 \text { Rocket } \\ & \quad(38039 \\ & \text { 2011-079-B) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:11.6 ${ }^{\circ}$ Culminatio h:55.6 ${ }^{\circ}$ distance: of Sun: -1 Disappears	3h56m29s 3h59m50s 6.1 km hei angular v 4h05m58s	4.9 mag 3.0 mag ht above locity: 7.7mag	$\begin{aligned} & \text { az: } 180.2^{\circ} \\ & \text { az: } 258.7^{\circ} \\ & \text { Earth: } 525 \\ & 0.71^{\circ} / \mathrm{s} \\ & \text { az:342. } 6^{\circ} \end{aligned}$	S WSW .9km NNW	elevat horizon

65	4h10m17s	SAR Lupe 4 Rocket $\begin{aligned} & (32751 \\ & 2008-014-B) \end{aligned}$ $\rightarrow \text { Ground track }$ \rightarrow Star chart	Appears horizon Culmination h: 65.7° distance: 4 of Sun: - 10° at Meridian Disappears	4h05m21s 4h10m17s 5.9 km hei angular v 4h11m50s 4h13m09s	10.5 mag 4.1mag ht above locity: 4.9mag 6.0 mag	$\begin{gathered} \text { az: } 16.1^{\circ} \\ \text { az: } 102.9^{\circ} \\ \text { Earth: } 38 \\ 1.03^{\circ} / \mathrm{s} \\ \text { az:180.0 } \\ \text { az:186. } 2^{\circ} \end{gathered}$	NNE ESE . 2 km S S	$\begin{gathered} \mathrm{h}: 24.5^{\circ} \\ \mathrm{h}: 10.5^{\circ} \end{gathered}$
5	4h13m36s	$\begin{aligned} & \quad \begin{array}{l} \text { Cosmos } 2455 \\ (36095 \\ 2009-063-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears horizon Culmination $h: 43.8^{\circ}$ distance: 1 of Sun: - 10° at Meridian Disappears	4h05m19s 4h13m36s 43.6 km he angular v 4h18m16s 4h21m50s	6.6 mag 3.4mag ght abov locity: 4.6 mag 5.7 mag	az:321.3º $a z: 246.0^{\circ}$ Earth: $0.34^{\circ} / \mathrm{s}$ az:180.0 ${ }^{\circ}$ az:170.1	NW WSW 5.7k S S	h: 14.9° horizon
5	4h15m57s	$\begin{aligned} & \text { Yaogan 9A } \\ & \quad(36413 \\ & 2010-009-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian h: 81.0° Culmination distance: 1 elevation o Disappears	4h06m11s 4h15m37s 4h15m57s 59.8km he Sun: -10° 4h26m11s	8.7 mag 5.8mag 5.8mag ght abov angular 8.4mag	az:317. 8° az: 0.0° az: 48.5° Earth: velocity: az:138.7 ${ }^{\circ}$	NW N NE 54.6 0.36 SE	$\begin{aligned} & \mathrm{h}: 84.0^{\circ} \\ & \mathrm{km} / \mathrm{s} \\ & \text { horizon } \end{aligned}$
65	4h16m06s	$\begin{aligned} & \quad \begin{array}{l} \text { Yaogan 9B } \\ \quad(36414 \end{array} \\ & 2010-009-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian $h: 84.5^{\circ}$ Culmination distance: 1 elevation o Disappears	4h06m20s 4h15m54s 4h16m06s 57.4 km he Sun: -9 ${ }^{\circ}$ 4h26m21s	8.7 mag 5.7mag 5.7mag ght abov angular 8.4mag	az:317. 8° az: 0.0° az: 49.0° Earth: velocity: az:139.8	NW N NE 55.6 $.36^{\circ}$ SE	$\begin{aligned} & \mathrm{h}: 86.4^{\circ} \\ & \mathrm{cm} \\ & \text { /s } \mathrm{s} \text { horizon } \end{aligned}$
s	4h16m16s	$\begin{aligned} & \quad \begin{array}{l} \text { Yaogan 9C } \\ \text { (36415 } \end{array} \\ & \text { 2010-009-C) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian $h: 80.9^{\circ}$ Culmination distance: 1 elevation o Disappears	4h06m30s 4h15m57s 4h16m16s 60.3 km he Sun: -9ㅇ 4h26m31s	8.7 mag 5.8 mag 5.8mag ght abov angular 8.4mag	az:317. 8° az: 0.0° az: 48.5° Earth: velocity: az:138.7	$\begin{aligned} & \text { NW } \\ & \text { N } \\ & \text { NE } \\ & 155.0 \\ & .36^{\circ} \\ & \text { SE } \end{aligned}$	h:84.0
(s)	4h16m17s	USA$3-2 C$(2809 $2003-054-C)$$\rightarrow$ Ground track\rightarrow Star chart	Appears $h: 10.7^{\circ}$ Culmination $h: 65.6^{\circ}$ distance: 1 elevation at Meridian Disappears	4h10m00s 4h16m17s 24.0 km he Sun: -9ㅇ 4h17m18s 4h26m00s	5.9 mag 4.7mag ght abov angular 5.2 mag 12.2 mag	az:234.4 ${ }^{\circ}$ az:316.6 ${ }^{\circ}$ Earth: velocity: az: 0.0° az: 42.5°	SW NW 38.3 $.39^{\circ}$ N NE	
5	4h16m21s	\quadRocket Roan-O (25861 1999-039-B) \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h:39.9 ${ }^{\circ}$ distance: 9 of Sun: -9 ${ }^{\circ}$ Disappears	4h09m53s 4h16m21s .0km hei angular ve 4h22m34s	8.8mag 3.7 mag ht above ocity: 0 5.2mag	$\begin{aligned} & \text { az: } 19.5^{\circ} \\ & \text { az: } 97.9^{\circ} \\ & \text { Earth: } 64 \\ & .45^{\circ} / \mathrm{s} \\ & \text { az: } 175.3^{\circ} \end{aligned}$	NNE E .8 km S	elevat

		$\begin{aligned} & 2008-031-G) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	$\begin{array}{r} \mathrm{h}: 46.9^{\circ} \\ \text { Culminatio } \\ \text { distance: } \\ \text { of Sun: - } \\ \text { Disappears } \end{array}$	4h23m56s 3.3 km hei angular ve 4h30m58s	4.3mag ht above ocity: 0 9.3mag	$\begin{aligned} & \text { az:154.9 } \\ & \text { Earth: } 666 \\ & .53^{\circ} / \mathrm{s} \\ & \text { az: } 75.7^{\circ} \end{aligned}$	SSE . 2 km ENE	$h: 49.9^{\circ}$ elevation horizon
(3)	4h25m58s	$$	Appears h:7.6 ${ }^{\circ}$ Culminatio h: 81.0° distance: of Sun: -8 at Meridia Disappears	4h21m07s 4h25m58s 3.3 km hei angular ve 4h27m14s 4h32m40s	6.5 mag 4.3mag ht above ocity: 0 5.7 mag 9.8 mag	az: 191.4° $a z: 279.8^{\circ}$ Earth: 626 $70^{\circ} / \mathrm{s}$ az: 0.0° az: 9.4°	SSW W .4km N N	elevation $h: 46.6^{\circ}$ horizon
(8)	4h27m49s	Helios 1B Rocket ```(25979 1999-064-C)``` \rightarrow Ground track \rightarrow Star chart	Appears h:5.7º Culminatio $h: 41.7^{\circ}$ distance: of Sun: -8 Disappears	4h22m58s 4h27m49s 0.5 km hei angular ve 4h34m06s	5.6mag 3.6 mag ht above ocity: 0 7.5mag	$\begin{aligned} & \text { az: } 185.9^{\circ} \\ & \text { az: } 261.2^{\circ} \\ & \text { Earth: } 601 \\ & .51^{\circ} / \mathrm{s} \\ & \text { az:340.4 } \end{aligned}$	S W .7km NNW	elevation horizon
(3)	4h27m57s	```Egyptsat 2 Rocket (39679 2014-021-B) \rightarrow G \text { Ground track} OStar chart```	Appears h:1.9 ${ }^{\circ}$ Culminatio h:65.7${ }^{\circ}$ distance: of Sun: -8 at Meridia Disappears	4h21m00s 4h27m57s 0.2 km hei angular ve 4h28m05s 4h35m14s	5.0mag 2.8 mag ht above ocity: 0 2.9 mag 7.6 mag	az:263.7 ${ }^{\circ}$ az: 349.2° Earth: 700 $58^{\circ} / \mathrm{s}$ az: 0.0° az: 75.4°	W N .1 km N ENE	$\mathrm{h}: 65.3^{\circ}$ horizon
(3)	4h30m23s	$\begin{aligned} & \quad \text { USA } \\ & 3 / \mathrm{CH} / \mathrm{OTV}- \\ & 3 / \mathrm{X}-37 \mathrm{~B} \\ & (39025 \\ & 2012-071-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h:7.2 ${ }^{\circ}$ Culminatio $h: 22.6^{\circ}$ distance: of Sun: -8 at Meridia Disappears	4h27m20s 4h30m23s 5.7 km hei angular ve 4h30m53s 4h35m08s	4.8 mag 3.5 mag ht above ocity: 0 3.6 mag 6.3 mag	$\begin{aligned} & \text { az: } 255.4^{\circ} \\ & \text { az: } 195.7^{\circ} \\ & \text { Earth: } 37 \varnothing \\ & .54^{\circ} / \mathrm{s} \\ & \text { az:180.0 } \\ & \text { az:126.1 } \end{aligned}$	WSW SSW .4 km S SE	elevation $h: 21.6^{\circ}$ horizon

68 Items/Events: Export to OutlookiCal回 Print \triangle E-mail
Used satellite data set is from 7 June 2014

$\square \quad$ Hide glossary

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north
(09 clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the
 observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Flare angle

The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).

Flare

The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

Iridium

Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission
Antennas MMA (the three panels in the bottom of the image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.l Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Remarks

These calculations are based on mean observed radiants and rates. For exceptional outbursts, these special predictions will be included as well.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or $00 \mathrm{~h} 00 \mathrm{m00}$ s. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 hOOm is midnight, 12h: noon, 18h: 6 pm .)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W
or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top
This material is ©1998-2014 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages

Create new default accountLogout are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 28 May 2014
Database updated 9 min ago
Current Users: 214, Runtime: 2.2s

18 Jun 2014, 12:42 UTC
585 minutes left for this session [i/ Mode for our sponsors

