## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

| Calendar and Timekeeping |  |
| :---: | :--- |
|  | Space Calendar: |
| $\square$ | Birthdays, Rocket <br> Launches |
| $\square$ | Local Events (Talks, <br> Exhibitions) |
| $\square$ | NASA TV Guide |
| $\square$ | Local Telescope Dealers |
| $\square$ | Public Holidays |
| $\square$ | Saint's Day <br> $\square$Zodiac of today. Change <br> of Zodiac <br> $\square$Islamic, Indian, Persian <br> and Hebrew Calendar <br> $\square$ |
| Week Number |  |
| $\square$ | Sundials / GPS Time / <br> Current Time Definitions |
| $\square$ | Julian Day Number |
| $\square$ | Sidereal Time |
| $\square$ | Local Magnetic Field |



Monday 30 January 2012

| Time (24-hour clock) | Object (Link) | Event |
| :---: | :---: | :---: |
| (5) | Observer Site | ```temple, France WGS84: Lon: +0d31m28.09s Lat: +44d22m47.15s Alt: 91m All times in CET or CEST (during summer)``` |
| (3) 7.5h | 87Mars | Magnitude=-0.5mag Best seen from $21.6 \mathrm{~h}-8.1 \mathrm{~h}$ ( $h_{\text {top }}=52^{\circ}$ at $S$ at 4.0h) (in constellation Virgo) RA=11h39m04s Dec $=+6^{\circ} 22.9^{\prime}$ (J2000) <br> Distance $=0.804 \mathrm{AU}$ Elongation $=137^{\circ}$ Phase $k=95 \%$ <br> Diameter=11.6" planetographic latitude of the Earth=23.2 ${ }^{\circ}$ |


| 18 | 7.5h | Thaturn | $\begin{aligned} & \text { Magnitude }=0.6 \mathrm{mag} \text { Best seen from } 0.9 \mathrm{~h}-8.1 \mathrm{~h} \\ & \text { (htop }=37^{\circ} \text { at } \mathrm{S} \text { at } 6.3 \mathrm{~h} \text { ) (in constellation Virgo) } \\ & \text { RA=13h52m31s Dec }=-8^{\circ} 49.9^{\prime}(\mathrm{J} 2000) \\ & \text { Distance=9.476AU Elongation }=100^{\circ} \text { Diameter=17.5" } \\ & \text { planetocentric latitude of the Earth=15.1 } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 6) | 7 h 30 m | (Y)Sun | Sun $9^{\circ}$ below horizon |
| (3) | 7h35m25s | $\begin{aligned} & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$ |  |
| 5 tems/Events: Export to OutlookiCal国 Print $\triangle$ E-mail Used satellite data set is from 28 January 2012 |  |  |  |

## $\square \quad$ Hide glossary

## Glossary:

## Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

## at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

## Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north ( 09 clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.

## Best seen between / $h_{\text {max }}$

This is the best visibility time interval of the object, and the time is rounded to the next decimal hour; e.g. 6.4 h corresponds to about 6:15 (hh:mm) to 6:20, and 18.9h to about 18:50 to 18:55. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $h_{\text {max }}$ is the maximum altitude over the horizon, that the object reaches during this time period.


## Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears. Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is $90^{\circ}$ north.
Diameter
Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Elongation

The elongation is the angular separation a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

J2000, precession, nutation
The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale. $\backslash$ Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29 mag .

## Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.

## R.A, right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00h00m00s. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 hOOm is midnight, 12h: noon, 18h: 6 pm .)

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or -. The longitude from the meridian of Greenwich is counted positive towards east ( E ). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

This material is ©1998-2013 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

| Calendar and Timekeeping |  |
| :---: | :--- |
|  | Space Calendar: |
| $\square$ | Birthdays, Rocket <br> Launches |
| $\square$ | Local Events (Talks, <br> Exhibitions) |
| $\square$ | NASA TV Guide |
| $\square$ | Local Telescope Dealers |
| $\square$ | Public Holidays |
| $\square$ | Saint's Day <br> $\square$Zodiac of today. Change <br> of Zodiac <br> $\square$Islamic, Indian, Persian <br> and Hebrew Calendar <br> $\square$ |
| Week Number |  |
| $\square$ | Sundials / GPS Time / <br> Current Time Definitions |
| $\square$ | Julian Day Number |
| $\square$ | Sidereal Time |
| $\square$ | Local Magnetic Field |



Sunday 22 January 2012

| Time (24-hour clock) | Object (Link) | Event |
| :---: | :---: | :---: |
| (3) | Observer Site | ```temple, France WGS84: Lon: +0d31m28.09s Lat: +44d22m47.15s Alt: 91m All times in CET or CEST (during summer)``` |
| (8) 7.0 h | $\delta^{*}$ Mars | Magnitude=-0.3mag Best seen from 22.2h-8.2h (htop $=52^{\circ}$ at $S$ at 4.6 h ) (in constellation Virgo) $R A=11 \mathrm{~h} 39 \mathrm{~m} 33 \mathrm{~s} \quad \mathrm{Dec}=+6^{\circ} 04.9^{\prime}$ (J2000) <br> Distance $=0.862 \mathrm{AU}$ Elongation $=128^{\circ}$ Phase $k=94 \%$ Diameter=10.9" planetographic latitude of the Earth $=23.4^{\circ}$ |


| (3) | 7.0h | T2aturn | Magnitude $=0.6 \mathrm{mag}$ Best seen from $1.4 \mathrm{~h}-8.2 \mathrm{~h}$ (htop $=37^{\circ}$ at S at 6.8 h ) (in constellation Virgo) RA=13h51m48s Dec $=-8^{\circ} 48.3^{\prime}$ (J2000) Distance=9.608AU Elongation $92^{\circ}$ Diameter=17.2" planetocentric latitude of the Earth=15.1 |
| :---: | :---: | :---: | :---: |
| 13 | 7.0h | Deep-Sky Observing | Best time interval for observing dim objects: 19.3h- 7.0h |
| 3 | 7 h 02 m | $)^{1}\right)^{\text {Sun }}$ | Sun $15^{\circ}$ below horizon |
| 18 | 7h05m46.44s |  | ```Close to Pollux, Bet Gem (SAO 79666, HIP 37826 HD 62509), Magnitude=1.2mag. Separation=0.548* Position Angle=255.2*, Position angle vertex=207.9}\mp@subsup{}{}{\circ Angular diameter=22.8" size=109.0m x 73.0m x 27.5m Satellite at Azimuth=295.0' WNW Altitude= 14.5* Distance=1211.5 km (in shadow) In a clock-face concept, the satellite will seem to move toward 2:04 Angular Velocity=14.8'/s Centerline, closest point ->Map: Longitude= 0031'14"E Latitude=+44\circ34'43' (WGS84) Distance=22.09 km Azimuth=359.20 N Path direction= 89.5 speed=10.673 km/s Sun elevation=-14* Elongation from Sun=169* Orbit source: NASA predicted orbit``` |
| (s) | 7h06m03.02s | ISS | ```Close to Castor, Alp Gem (SAO 60198, HIP 36850 HD 60179), Magnitude=1.6mag. Separation=0.606* Position Angle=72.6 Position angle vertex=25.5 Angular diameter=24.5" size=109.0m x 73.0m x 27.5m Satellite at Azimuth=299.1' WNW Altitude= 16.4* Distance=1128.1 km (in shadow) In a clock-face concept, the satellite will seem to move toward 2:09 Angular Velocity=16.9'/s Centerline, closest point ->Map: Longitude= 0031'00"E Latitude=+44*09'39" (WGS84) Distance=24.33 km Azimuth=181.5* S Path direction= 89.70 E ground speed=10.098 km/s Sun elevation=-14* Elongation from Sun=165* Orbit source: NASA predicted orbit``` |
| 63 | 7h07m53s | $\rightarrow \text { ISS }$ |  |

8 tems/Events: Export to OutlookiCalil ${ }_{3}$ Print E-mail
Used satellite data set is from 21 January 2012

## $\square \quad$ Hide glossary

## Glossary:

## Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.
Appears
Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.
at Meridian
Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

## Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09) clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.

## Best seen between / hmax

This is the best visibility time interval of the object, and the time is rounded to the next decimal hour; e.g. 6.4h corresponds to about 6:15 (hh:mm) to 6:20, and 18.9h to about 18:50 to 18:55. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\text {max }}$ is the maximum altitude over the horizon, that the object reaches during this time period.


## Close to Moon/Sun

The satellite is closer than 1.5 degrees from the center of the Moon or the Sun, but the satellite does not cross in front of the Moon/Sun. The direction and distance to the center line on Earth is given. For the Sun, move to the indicated center line position and observer with proper equipment. By no means observe the Sun without special filters!

## Close to...

The Moon or main object appears close to the listed star or planet. These events may be useful for reasons of 'near miss' or to make it easier to find the fainter object in the sky. Usually, such constellations give a nice view.

## Clock-face Direction

In a simple clock-face coordinate system with the clock face superimposed on the satellite itself, with 12:00 o'clock being at the top and 9:00 o'clock being at the left, the satellite will seem to move toward the given direction. This number is helpful when observing with binoculars.

## Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears. Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is $90^{\circ}$ north.

## Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Elongation

The elongation is the angular separation a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

## J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\Visual limiting magnitude is about 6 mag, whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29 mag .

Phase
Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.

## Position Angle rel. Vertex

Angle, defining a position on an apparent disk. It is counted around the reference points (center of disk) from local up, zenith direction $0^{\circ}$ to east (left) $90^{\circ}$, south $180^{\circ}$ to west (right) $270^{\circ}$ in counter clockwise direction.

## Position Angle / PA

Angle, defining a position on an apparent disk or the position of e.g. a dimmer star (or the anti-solar point for lunar eclipses) with regard of the main star or the center of disk. It is counted around the reference points (center of disk/brighter star) from celestial north direction $0^{\circ}$ to east (left) $90^{\circ}$, south $180^{\circ}$ to west (right) $270^{\circ}$ in coun ter clockwise direction.

## R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

## Separation

Angular distance between the centers of disks of two objects. For eclipses: the Sun and the Moon. For occultations: Moon/satellite and Star/Planet. For binary stars: Star/Star

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00h00m00s. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 h 00 m is midnight, 12h: noon, 18h: 6 pm .)

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east ( E ). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

This material is ©1998-2013 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

| Calendar and Timekeeping |  |
| :---: | :--- |
|  | Space Calendar: |
| $\square$ | Birthdays, Rocket <br> Launches |
| $\square$ | Local Events (Talks, <br> Exhibitions) |
| $\square$ | NASA TV Guide |
| $\square$ | Local Telescope Dealers |
| $\square$ | Public Holidays |
| $\square$ | Saint's Day <br> $\square$Zodiac of today. Change <br> of Zodiac <br> $\square$Islamic, Indian, Persian <br> and Hebrew Calendar <br> $\square$ |
| Week Number |  |
| $\square$ | Sundials / GPS Time / <br> Current Time Definitions |
| $\square$ | Julian Day Number |
| $\square$ | Sidereal Time |
| $\square$ | Local Magnetic Field |



Friday 24 February 2012

| Time (24-hour clock) | Object (Link) | Event |
| :---: | :---: | :---: |
| (5) | Observer Site | ```temple, France WGS84: Lon: +0d31m28.09s Lat: +44d22m47.15s Alt: 91m All times in CET or CEST (during summer)``` |
| (\$) 21.0 h | qVenus | ```Magnitude=-4.2mag Best seen from 9.4h -22.4h (htop=54* at S at 15.9h) (in constellation Pisces) RA= 1h09m23s Dec= +8'02.5' (J2000) Distance=0.944AU Elongation= 44* Phase k=65% Diameter=17.7"``` |


| (5) | 21.0h | かMars | ```Magnitude=-1.1mag Best seen from 19.4h - 7.5h (htop=11' at W at 7.5h) (in constellation Leo) RA=11h17m13s Dec= +9`11.0' (J2000) Distance=0.685AU Elongation=168\circ Phase k=99% Diameter=13.7" planetographic latitude of the Earth=22.60``` |
| :---: | :---: | :---: | :---: |
| (5) | 21.0h | 21 Jupiter | Magnitude $=-2.2 \mathrm{mag}$ Best seen from 18.9h -23.8 h (htop $=50^{\circ}$ at SW at 18.9 h ) (in constellation Aries) $\mathrm{RA}=2 \mathrm{~h} 15 \mathrm{~m} 53 \mathrm{~s}$ Dec $=+12^{\circ} 34.7^{\prime} \quad(\mathrm{J} 2000$ ) Distance $=5.395 \mathrm{AU}$ Elongation $=61^{\circ}$ Diameter=36.5" |
| (5) | 21 hoomons | $\begin{aligned} & \text { flare } \\ & \text { season } \end{aligned}$ | There will be flares from geostationary satellites today! Geostationary satellites are usually very dim objects, comparable with Pluto. Today, some can get so bright for some minutes, that they can be seen with the unaided eye. Look for them at the optimal coordinates and time given below and with patience. The satellites will move slowly through the stellar field, about one or one cluster every 5 minutes. <br> Optimal coordinates to look for geostationary satellites at this time: $R A=10 \mathrm{~h} 30 \mathrm{~m}$ Dec $=-6.4^{\circ}$, $\mathrm{az}=114.2^{\circ} \mathrm{h}=14.3^{\circ}$ (Purple Dot) The Sun is at $\operatorname{Dec}=-9.5^{\circ}$, flare angle $=3.1^{\circ}$ Optimal time from 19 h 43 m to 6 h 40 m |
| (3) | 21.0h | 6 Deep-Sky | Best time interval for observing dim objects: 20.0h- 6.4h Prior to midnight |
| (3) | 21h12m45s | Cosmos 1763 Rocket $\begin{aligned} & (16864 \\ & 1986-052-B) \end{aligned}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart | Appears 21h05m11s 7.7 mag $\mathrm{az}: 203.8^{\circ} \mathrm{SSW}$ <br> horizon    <br> Culmination 21h12m45s $\mathbf{4 . 3 m a g}$ az:291.7 |
| (5) | 21 h 22 m 37 s | $\begin{aligned} & \quad 194 / \text { NOSS } \\ & 3-4 A \\ & (31701 \\ & 2007-027-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$ |  |
| (5) | 21h22m42s | $\begin{aligned} & \text { USA } \\ & 3-4 \mathrm{C} \\ & \text { (31708 } \\ & 2007-027-\mathrm{C}) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$ |  |
| 6) | 21 h 26 m 36 s | $\rightarrow$ ISS | Appears <br> horizon 21 h 24 m 29 s 1.8 mag $\mathrm{az}: 299.8^{\circ} \mathrm{WNW}$ <br> Disappears <br> $\mathrm{h}: 10.6^{\circ}$ 21 h 26 m 36 s 0.1 mag $\mathrm{az}: 298.7^{\circ} \mathrm{WNW}$ |

10 tems/Events: Export to OutlookiCall 凅 Print E-mail
Used satellite data set is from 25 February 2012
$\square \quad$ Hide glossary

## Glossary:

## Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

## Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

## at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

## Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north ( 09 clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.

## Best seen between / hmax

This is the best visibility time interval of the object, and the time is rounded to the next decimal hour; e.g. 6.4h corresponds to about 6:15 (hh:mm) to 6:20, and 18.9h to about 18:50 to 18:55. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\text {max }}$ is the maximum altitude over the horizon, that the object reaches during this time period.


## Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears. Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is $90^{\circ}$ north.

## Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Elongation

The elongation is the angular separation a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

## J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale. $\backslash$ Visual limiting magnitude is about 6 mag, whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29 mag .

## Phase

Ratio of the illuminated fraction of the apparent planetary or lunar disk to its entire area.

## R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 h 00 m is midnight, 12h: noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east ( E ). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

## Top

This material is ©1998-2013 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 24 November 2013
Database updated 20 min ago Current Users: 169

16 Dec 2013, 17:53 UTC
595 minutes left for this session / Mode for our sponsors
Google $\Gamma$ Search
O Web $\odot$ CalSky.com

