The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping	
	Space Calendar:
\square	Birthdays, Rocket
	Launches
\square	Local Events (Talks,
\square	Exhibitions)
\square	NASA TV Guide
\square	Local Telescope Dealers
\square	Public Holidays
\square	Saint's Day
\square	Zodiac of today. Change of Zodiac \square
Islamic, Indian, Persian	
and Hebrew Calendar	
\square	Week Number
\square	Sundials / GPS Time / Current Time Definitions \square
\square	Julian Day Number
\square	Sidereal Time
\square	Local Magnetic Field

General events	Earth orbiting satellites	Dimmer and more difficult objects
months)	month)	Jupiter: Great Red Spot
- Planetary Conjunctions	short duration Flares of Iridium satellites (14 days)	and satellite events Jupiter's Satellites:
\square Lunar Eclipses	Passes of other bright satellites (1 day, slow!)	position \square Saturn: Satellite events
Solar Eclipses and Transits		and storms
\square Meteor Streams	Daily reoccurring events	Saturn's Satellites: position
จ Planetary Phenomena	Planets	Zodiacal light/Gegenschein
V Lunar Phenomena	$\square \quad$ Asteroids	$\square \quad$ Variable Stars (3 months)
\square The Sun	Comets	\square Supernovae
\square Asteroids (6 months)	$\square \quad$ Meteor Streams	$\square \quad$ Binary Stars
\square Comets	Polar Star Transits	Deep sky objects
	$\square \quad$ Weather Balloons	$\square \quad$ Milky Way
		$\square \quad$ Galaxies
		\square Open Star Clusters
		\square Globular Star Clusters
		$\square \quad$ Nebula

Wednesday 15 June 2011

Time (24-hour clock)	Object (Link)	Event
(3)	Observer Site	paris, France WGS84: Lon: +5d12m31.01s Lat: +45d41m51.40s Alt: 281m All times in CET or CEST (during summer)
(s) $23 \mathrm{~h} 40 \mathrm{m01s}$	$\sigma^{\mathrm{W}} \mathrm{USA}$ 32/Singlet SBWASS R1 $\begin{aligned} & (19460 \\ & 1988-078-A) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	

(5)	23.7 h	T2 Saturn	Magnitude $=0.8 \mathrm{mag}$ Best seen from 22.1h -2.6 h $\left(\right.$ htop $=39^{\circ}$ at SSW at 22.1 h) (in constellation Virgo) RA=12h41m49s Dec $=-1^{\circ} 43.4^{\prime} \quad(\mathrm{J} 2000)$ Distance $=9.305 \mathrm{AU}$ Elongation $=106^{\circ}$ Diameter=17.8" planetocentric latitude of the Earth=7.3
(5)	23h46m11s	4, Iridium 39	```Flare from MMAO (Front antenna) Magnitude= 2.5mag Azimuth=256.80 WSW altitude= 27.90 in constellation Leo RA=11h37.0m Dec=+11\circ11' Flare angle=2.270 Flare center line, closest point ->MapIt: Longitude=3.821oE Latitude=+45.804* (WGS84) Distance=108.3 km Azimuth=276.80 W Peak Magnitude=-6.6mag Satellite above: longitude=8.30}\textrm{W}\mathrm{ latitude=+42.90 height above Earth=782.9 km distance to satellite=1434.1 km Altitude of Sun=-16.30```
cs	$23 \mathrm{~h} 48 \mathrm{m00s}$	$\begin{aligned} & \quad(23560 \\ & 1995-021-A) \\ & \text { ERS-2 } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(5)	23h48m08s	$\begin{aligned} & \quad \begin{array}{l} \text { Terra } \\ (25994 \\ 1999-068-A) \end{array} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(9)	23h54m17s	(Cosmos 1833 Rocket $\begin{aligned} & (17590 \\ & 1987-027-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	

Thursday 16 June 2011

Time	(24-hour clock)	Object (Link)	Event				
(3)	Oh04m10s	Korons-Foton Rocket $(33505$ 2009-003-B) \rightarrow Ground track \rightarrow Star chart	```Appears h:37.60 Culmination h:71.00 distance: 57 of Sun: -18* Disappears```	Oh02m44 Oh04m10 $.5 \mathrm{~km} \quad \mathrm{~h}$ angular 0h10m18	4.4 ma 3.9 ma ht abo locity 9.4ma	$\begin{aligned} & \text { az:170.0 } \\ & \text { az: } 96.5^{\circ} \mathrm{S} \\ & \text { Earth: } 550.7 \mathrm{~km} \\ & 0.76^{\circ} / \mathrm{s} \\ & \text { az: } 11.4^{\circ} \mathrm{NNE} \end{aligned}$	elevat horizon
(3)	Oh08m39s	$\begin{aligned} & \text { NOSS 1 (D) } \\ & (08836 \\ & 1976-038-D) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:58.2o distance: 56 of Sun: -18* at Meridian Disappears```	Oh01m50s Oh08m39s .5 km h angular Oh09m24s 0h13m42	9.6 ma 6.5 ma ht above locity 7.1 ma 10.1 ma	$\begin{aligned} & \mathrm{az}: 225.5^{\circ} \mathrm{SW} \\ & \mathrm{az}: 309.8^{\circ} \mathrm{NW} \\ & \text { Earth: } 488.2 \mathrm{~km} \\ & 0.79^{\circ} / \mathrm{s} \\ & \mathrm{az}: \quad 0.0^{\circ} \mathrm{N} \\ & \mathrm{az}: 35.5^{\circ} \mathrm{NE} \end{aligned}$	elevat $\text { h: } 45.5^{\circ}$ horizon
(3)	Oh09m16s	$\begin{aligned} & \text { Cosmos } 1300 \\ & (12785 \\ & 1981-082-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:59.60 distance: 634 of Sun: -18* Disappears```	Oh03m08s Oh09m16s .5 km h angular Oh10m52	10.2 ma 3.9 ma ht abo locity 4.2 ma	$\begin{aligned} & \text { az: } 347.2^{\circ} \mathrm{NNW} \\ & \mathrm{az}: 264.7^{\circ} \mathbf{W} \\ & \text { Earth: } 555.0 \mathrm{~km} \\ & 0.67^{\circ} / \mathrm{s} \\ & \text { az:198.7 } \end{aligned}$	elevat $\text { h: } 32.8^{\circ}$
83	Oh09m	$\left.Y^{1}\right)^{\text {Sun }}$	End astronomi	l twil			

(5)	Oh33m08s	$\begin{aligned} & 133 / \text { Lacrosse } 3 \\ & (25017 \\ & 1997-064-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:44.4o distance: 895 of Sun: -190 Disappears```	Oh2 6m16s 0h33m08s .3km hei angular v Oh34m10s	7.9 mag 3.3 mag ht above locity: 3.3mag	$\begin{aligned} & \text { az: } 306.1^{\circ} \\ & \text { az: } 228.7^{\circ} \\ & \text { Earth: } 65 \\ & 0.46^{\circ} / \mathrm{s} \\ & \text { az:193.40 } \end{aligned}$	NW SW . 9 km SSW	elevat $h: 38.0^{\circ}$
(3)	0h44m28s	$\begin{aligned} & \text { (12054 } 1220 \\ & \text { Cosmos } 1980-089-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:51.30 distance: 619 of Sun: -200 Disappears```	Oh38m32s Oh44m28s . 9 km he angular 0h44m45s	8.2 mag 2.6 mag ht above locity: 2.5 mag	$\begin{aligned} & \text { az: } 320.0^{\circ} \\ & \text { az: } 239.4^{\circ} \\ & \text { Earth: } 494 \\ & 0.68^{\circ} / \mathrm{s} \\ & \text { az: } 221.2^{\circ} \end{aligned}$	NW WSW . 8 km SW	elevat $h: 49.8^{\circ}$
(3)	Oh45m53s	Lacrosse 5 Rocket $\begin{aligned} & (28647 \\ & 2005-016-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	```Appears h: 60.50 at Meridian h:61.10 Culmination distance: 550 of Sun: -200 Disappears```	Oh45m25s Oh45m26s Oh45m53s . 3 km hei angular v Oh52m10s	1.7 mag 1.7 mag 1.7 mag ht above locity: 6.3mag	$\begin{aligned} & \text { az:181. } 2^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 136.3^{\circ} \\ & \text { Earth } 51 ، \\ & 0.79 \circ / \mathrm{s} \\ & \text { az: } 51.7^{\circ} \end{aligned}$	S S SE 4.7 km NE	horizon
(5)	Oh46m44s	$\begin{aligned} & \text { DPAF Del } \\ & (26623 \\ & 2000-075-E) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears h:41.4o Culmination h:62.80 distance: 707 of Sun: -20* at Meridian Disappears```	0h45m25s Oh46m44s . 5 km hei angular v Oh49m07s 0h53m16s	4.6 mag 4.5 mag ht above locity: 7.2 mag 10.8 mag	$\begin{aligned} & \text { az: } 134.8^{\circ} \\ & \text { az: } 73.2^{\circ} \\ & \text { Earth: } 636 \\ & 0.63^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 350.3^{\circ} \end{aligned}$	SE ENE .9 km N N	elevat h: 25.7° horizon
(5)	Oh48m45s	$\begin{aligned} & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears WNW horizo Culmination $h: 26.8^{\circ}$ distance: elevation at Meridian $\mathrm{h}: 26.7^{\circ}$ Disappears horizon	0h43m4 0h48m4 84.4 km f Sun: Oh48m5 0h53m4		3mag az: 3mag az: above Ear gular vel 3mag az: Omag az:	81. 55. h: cit 0 . 69.	\mathbf{N} 389.6 km : 0.55 ${ }^{\circ} \mathrm{N}$ $2^{\circ} \mathrm{ENE}$
(5)	0h56m31s	ADEOS 2 H2A Rocket $\begin{aligned} & (27601 \\ & 2002-056-E) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears h:33.90 Culmination h:53.90 distance: 97 of Sun: -20* Disappears```	Oh54m29s Oh56m31s 6.6 km hei angular v 1h04m14s	3.4 mag 3.2 mag ht above locity: 8.9mag	$\begin{aligned} & \text { az: } 201.5^{\circ} \\ & \text { az: } 260.0^{\circ} \\ & \text { Earth: } 81 \\ & 0.45^{\circ} / \mathrm{s} \\ & \text { az: } 342.5^{\circ} \end{aligned}$	SSW W .9 km NNW	elevat horizon
(5)	0h56m58s	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { USA } 62 / \text { NOSS } \\ (20692 \\ 1990-050-D) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}\right. \\ & \hline \end{aligned}$	```Appears horizon Culmination h:42.90 distance: elevation of Disappears```	Oh47m24s Oh56m58s 89.4 km he Sun: -20° 1h01m01s	$10.2 \mathrm{mag}$ 6.4mag ght above angular 6.7 mag	$\begin{aligned} & \text { az: } 316.4^{\circ} \\ & \text { az: } 242.4^{\circ} \\ & \text { e Earth: } \\ & \text { velocity: } \\ & \text { az: } 192.3^{\circ} \end{aligned}$	NW WSW 330.8 0.22 SSW	m /s $h: 27.3^{\circ}$
(3)	Oh57m10s	$\begin{aligned} & \text { USA 61/NOSS } \\ & (20691 \\ & 1990-050-C) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:44.00 distance: elevation of Disappears```	Oh47m30s Oh57m10s 76.6 km he Sun: -20 1h01m17s	10.2 mag 6.4 mag ght abov angular 6.7 mag	$\begin{aligned} & \text { az: } 316.6^{\circ} \\ & \text { az: } 242.2^{\circ} \\ & \text { e Earth: } 1: \\ & \text { velocity: } \\ & \text { az:191.0 } \end{aligned}$	NW WSW $\begin{aligned} & 341.2 \\ & 0.22 \\ & S \end{aligned}$	km /s $h: 27.6^{\circ}$
(3)	Oh57m13s	$\begin{aligned} & \text { (E) } \\ & (20642 \\ & 1990-050-E) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	```Appears horizon Culmination h:44.00 distance: elevation of Disappears```	Oh47m28s Oh57m13s 93.1 km he Sun: -20° 1h01m23s	10.3 mag 6.4mag ght above angular 6.7 mag	$\begin{aligned} & \text { az:316.7} \\ & \text { az: } 242.4^{\circ} \\ & \text { e Earth: } \\ & \text { velocity: } \\ & \text { az:191.1 } \end{aligned}$	NW WSW 354.1 0.22 S	$\begin{aligned} & \mathrm{km} \\ & \circ / \mathrm{s} \\ & \mathrm{~h}: 27.5^{\circ} \end{aligned}$

		\rightarrow Ground track \rightarrow Star chart	distance: 6 of Sun: -21° at Meridian Disappears	.5 km hei angular 1h26m33s 1h31m05s	ht above locity: 6.2 mag 9.9 mag	$\begin{aligned} & \text { Earth: } 59 \\ & 0.71^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \mathrm{az}: \quad 9.5^{\circ} \end{aligned}$	$.6 \mathrm{~km}$ N N	$\begin{aligned} & \text { elevat } \\ & \text { h:30. } 8^{\circ} \\ & \text { horizon } \end{aligned}$
(3)	1h27m01s	$\begin{aligned} & \quad(37348 \\ & \text { (3SA } 224 / \mathrm{KH} \\ & 2011-002-\mathrm{A}) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears $h: 27.2^{\circ}$ Culmination $\text { h: } 42.3^{\circ}$ distance: 1 of Sun: -21° at Meridian Disappears	1h24m49s 1h27m01s 5.9 km he angular v 1h31m32s 1h33m11s	6.7 mag 6.4mag ght abov locity: 10.4 mag 11.6 mag	$\begin{aligned} & \text { az: } 123.3^{\circ} \\ & \text { az: } 72.0^{\circ} \\ & \text { e Earth: } \\ & 0.44^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 354.9^{\circ} \end{aligned}$	$\begin{aligned} & \text { ESE } \\ & \text { ENE } \\ & 6.6 \mathrm{k} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	
(5)	1h29m18s	\boldsymbol{q}^{W} NOSS $3-4$ Rocket $\begin{aligned} & (31702 \\ & 2007-027-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon at Meridian h: 44.2° Culmination distance: 1 of Sun: -21° Disappears	$1 \mathrm{~h} 21 \mathrm{m00s}$ 1h27m54s 1h29m18s 36.0 km he angular v 1h33m47s	7.8 mag 4.5 mag 3.7 mag ght abov locity: 4.6 mag	$\begin{aligned} & \text { az: } 322.5^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 45.3^{\circ} \\ & e \text { Earth } 8 \\ & 0.40^{\circ} / \mathrm{s} \\ & \text { az: } 119.4^{\circ} \end{aligned}$	NW N NE 0.7 k ESE	$h: 54.7^{\circ}$ eleva $\mathrm{h}: 16.5^{\circ}$
(3)	1h31m08s	$\begin{array}{\|l} \quad \begin{array}{l} \text { Cosmos } 2219 \\ (22219 \end{array} \\ 1992-076-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	Appears horizon Culmination $\text { h: } 68.2^{\circ}$ distance: 8 of Sun: -21° Disappears	$1 \mathrm{~h} 23 \mathrm{m05s}$ 1h31m08s . 3 km hei angular 1h33m00s	9.2 mag 3.9 mag ht above locity: 4.1mag	$\begin{aligned} & \text { az: } 331.4^{\circ} \\ & \text { az: } 248.1^{\circ} \\ & \text { Earth }: 84 \\ & 0.46^{\circ} / \mathrm{s} \\ & \text { az: } 180.4^{\circ} \end{aligned}$	NNW WSW .1 km S	h:41.70
(3)	1h32m03s	Rubin 2 Dnpr Rocket $\left\lvert\, \begin{aligned} & (27610 \\ & 2002-058-F) \end{aligned}\right.$	```Appears h:48.3o Culmination h:49.30```	$\begin{aligned} & 1 \mathrm{~h} 31 \mathrm{~m} 45 \mathrm{~s} \\ & 1 \mathrm{~h} 32 \mathrm{~m} 03 \mathrm{~s} \end{aligned}$	4.4mag 4. 4mag	$\begin{aligned} & \mathrm{az}: 135.0 \\ & \mathrm{az}: 120.4 \end{aligned}$	SE ESE	

	1h32m03s	$\begin{aligned} & 2002-058-F) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	distance: 775 of Sun: -21° Disappears	.6 km he angular 1h38m37s	ht above locity: 9.1mag	$\begin{gathered} \text { Earth: } 60 \\ 0.58^{\circ} / \mathrm{s} \\ \text { az: } 40.9^{\circ} \end{gathered}$	$5.5 \mathrm{~km}$ NE	elevat horizon
(3)	1h35m28s	$\begin{aligned} & 143 /(\text { Milstar 2-1) } \\ & (25724 \\ & 1999-023-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon Culmination $h: 32.2^{\circ}$ distance: 415 elevation of at Meridian Disappears	1h21m23s 1h35m28s 9.4 km he Sun: -21° 1h37m26s 2h02m04s	6.9 mag 5.9mag ght above angular 6.0 mag 7.8 mag	$\begin{aligned} & \text { az:258.30} \\ & \text { az:190.5ㅇ } \\ & \text { e Earth: } 29 \\ & \text { velocity: } \\ & \text { az:180.0 } \\ & \text { az:130.1 } \end{aligned}$	$\begin{aligned} & \text { WSW } \\ & \mathbf{s} \\ & 08.0 \\ & 5.24 \\ & \text { S } \\ & \text { SE } \end{aligned}$	
(3)	1h36m57s	$\begin{aligned} & \quad \begin{array}{r} 93036 \mathrm{BMD} \\ (37500 \end{array} \\ & 1993-036-\mathrm{BMD}) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian $h: 85.7^{\circ}$ Culmination distance: 456 of Sun: -21° Disappears	1h31m07s 1h36m53s 1h36m57s .3 km hei angular 1h36m58s	10.8 mag 4.5 mag 4.5 mag ht above locity: 4.5 mag	$\begin{aligned} & \text { az: } 338.2^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 69.1^{\circ} \\ & \text { Earth: } 45 \\ & 0.94^{\circ} / \mathrm{s} \\ & \text { az: } 102.8^{\circ} \end{aligned}$	NNW N ENE .4 km ESE	$\begin{array}{r} h: 88.4^{\circ} \\ \text { elevat } \\ h: 88.1^{\circ} \end{array}$
(3)	1 h 37 m 17 s	$\begin{array}{\|l} \quad \text { Rosket } \\ \text { Rocket } \\ (19211 \\ 1988-050-B) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	Appears horizon at Meridian $h: 62.2^{\circ}$ Culmination distance: 616 of Sun: -21° Disappears	1 h 30 m 41 s 1h36m34s 1h37m17s .2 km hei angular 1h38m10s	10.6 mag 4.8 mag 4.1mag ht above locity: 4.2 mag	$\begin{aligned} & \text { az: } 351.1^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 81.6^{\circ} \\ & \text { Earth: } 614 \\ & 0.68^{\circ} / \mathrm{s} \\ & \text { az: } 165.0^{\circ} \end{aligned}$	N N E .8 km SSE	$\begin{array}{r} \text { h:85. } 6^{\circ} \\ \text { elevat } \\ \mathrm{h}: 56.0^{\circ} \end{array}$
(3)	1h39.7m	$\mathrm{C}^{2} \mathrm{Sun}$	Lower Transi	Alt	ude=-21	. 0°		

48 Items/Events: Export to Outlook/iCal 圂 Print \triangle E-mail
Used satellite data set is from 18 June 2011
$\square \quad$ Hide glossary

Glossary:

[^0]Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

Astronomical Twilight

The times are the moments of beginning/end of the astronomical twilight, i.e., the moments the Sun reaches a depression of 18° below the horizon. If the Sun is below this angle, no brightening of the sky can be observed.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09 clockwise to t he east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Best seen between / hmax

This is the best visibility time interval of the object, and the time is rounded to the next decimal hour; e.g. 6.4h corresponds to about $6: 15$ (hh:mm) to 6:20, and 18.9 h to about 18:50 to 18:55. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $h_{m a x}$ is the maximum altitude over the horizon, that the object reaches during this time period.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears. Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Elongation

The elongation is the angular separation a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

Flare angle

The angle between the direction of the mirrored image of the Sun and the observer. For bright flares, this angle must be as small as possible (i.e., the observer should be as close to the center line as possible).

Flare
The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the Moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.
Iridium
Wireless worldwide communication system, which consists of 66 satellites that are in low Earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e., one of the three Main Mission Antennas MMA (the three panels in the bottom of the image with a size of about $1 \times 2 \mathrm{~m}^{2}$). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale. \backslash Visual limiting magnitude is about 6 mag, whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29 mag .

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Rise, Transit, Culmination, Set

Rise and set times are for a mathematical horizon. Transit is the moment when the celestial object crosses the south meridian (for the northern hemisphere, north otherwise), i.e., it stands exactly in south (north) direction. There it reaches (for objects other than stars: almost) its highest point on its diurnal journey. Culmination is the event of the highest point. Times are listed only if they fall within the chosen interval, starting at the start time. Missing values indicate that the event does not take place at the underlying interval.

Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 hOOm is midnight, 12h: noon, 18h: 6 pm .)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth

Top

This material is ©1998-2014 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

$$
\begin{array}{cc}
\text { Software Version: } 7 \text { February } 2014 & 18 \text { Feb 2014, 16:24 UTC } \\
\text { Database updated } 22 \text { min ago } & 598 \text { minutes left for this session } ⿴ 囗
\end{array}
$$

Google \mid Search
\circ Web © CalSky.com

[^0]: Altitude/alt/h
 Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.
 Appears

