|Intro |Calendar $\mid$ Sun |Moon | Planets | Comets |Asteroids |Meteors |Deep-Sky | Satellites
$\underline{\text { Astro-Calendar User Profile } \cdot \underline{\text { Space Weather }} \text { - Ocean Tides • Meteo • Weather }}$
Balloons • Islam. Prayer Times
$\rightarrow$ Nightvision-Mode


## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

## Calendar and Timekeeping

Space Calendar:
$\square$ Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
$\square$ NASA TV Guide
Local Telescope Dealers

- Public Holidays
$\square$ Saint's Day
Zodiac of today. Change of Zodiac Islamic, Indian,
$\square$ Persian and Hebrew Calendar
- Week Number

General events
Lunar Occultations (2 months)
Planetary Conjunctions

- Lunar Eclipses Solar Eclipses and Transits
■ Meteor Streams Planetary Phenomena
$\square$ Lunar Phenomena
$\square$ The Sun Asteroids (6 months)
$\square$ Comets

Earth orbiting satellites

Space Station ISS (1 month)
short duration

- Flares of Iridium satellites (14 days) Passes of other
- bright satellites (7 days, slow!)
Daily reoccurring events
$\square$ Sun and Moon
$\square$ Planets
$\square$ Asteroids
- Comets
(0) Meteor Streams
$\square$ Polar Star Transits


## Dimmer and more

 difficult objects Jupiter: Great Red$\square$ Spot and satellite events
Jupiter's Satellites: position
Saturn: Satellite events and storms Saturn's Satellites: position Zodiacal light/Gegenschein Variable Stars (3 months)
$\square$ Supernovae
$\square$ Binary Stars
Deep sky objects

Sundials / GPS
$\square$ Time / Current
Time Definitions
$\square$ Julian Day Number
$\square$ Sidereal Time
Local Magnetic
Field
$\square$ Weather Balloons $\quad$ Milky Way
$\square$ Galaxies
$\square$ Open Star Clusters
Globular Star
Clusters
$\square$ Nebula

Friday 27 July 2012

| Time (24-hour clock) | Object (Link) | Event |
| :---: | :---: | :---: |
| 5 | Observer Site | ```chaveroche, France WGS84: Lon: +2d15m24.7s Lat: +45d34m25.7s Alt: 752m All times in CET or CEST (during summer)``` |
| 5 | Local Date | $\begin{aligned} & \text { Day of Year (DOY): } 209 \\ & \text { Week of Year (WOY): } 30 \end{aligned}$ |
| * 4h00m00s | USA $\frac{121 / \text { NOSS 2-3D }}{(23862}$ $\frac{1996-029-D)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  |
| * 4h01m07s | Cosmos$\underline{2428}$Rocket(31793 <br> $2007-029-B)$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| * 4h04m50s | $\frac{\text { Aqua }}{(27424}$ $\underset{\substack{\text { 2002-022-A) } \\ \rightarrow \text { Ground track }}}{\rightarrow \text { Star chart }}$ |  |
| (8) 4h14m45s | HTV-3 $($ KOUNOTORI $\frac{(38706}{2012-038-A)}$ $\rightarrow \rightarrow$ Ground track $\rightarrow$ Star chart |  |
| (8) 4h14m45s | $\rightarrow$ Ins | Appears 4 h 13 m 58 s -3.8 mag $\mathrm{az}: 270.7^{\circ}$ <br> $\mathrm{W} \quad \mathrm{h}: 45.6^{\circ}$    <br> Culmination 4 h 14 m 45 s -3.9 mag $\mathrm{az}: 334.4^{\circ}$ |



| 4h16m21.39s | ISS | Close to Capella, Alp Aur (SAO 40186, HIP 24608 HD 34029), Magnitude=0.1mag. Separation $=0.752^{\circ}$ <br> Position Angle $=243.7^{\circ}$, Position angle vertex $=294.6^{\circ}$ <br> Angular diameter=33.9" size=109.0m x $73.0 \mathrm{~m} \times 27.5 \mathrm{~m}$ Satellite at Azimuth $=51.0^{\circ} \mathrm{NE}$ Altitude $=26.9^{\circ}$ <br> Distance=816.0 km Magnitude=-1.2mag <br> In a clock-face concept, the satellite will seem to move toward 5:11 <br> Angular Velocity=18.0'/s <br> Centerline, closest point $\rightarrow$ Map: Longitude= <br> 2ㅇำ32"E Latitude $=+45^{\circ} 28^{\prime \prime} 51^{\prime \prime}$ (WGS84) <br> Distance $=11.63 \mathrm{~km}$ Azimuth=$=152.6^{\circ} \mathrm{SSE}$ Path direction $=62.6^{\circ}$ ENE ground speed $=8.637 \mathrm{~km} / \mathrm{s}$ Sun elevation=-18 Elongation from Sun $=47^{\circ}$ |
| :---: | :---: | :---: |
| (3) 4 h | 栄 Meteor | South Delta-Aquariids (SDA) Best seen from 23.4h - 5.1 h ( $h_{\text {top }}=29^{\circ}$ at $S$ at 4.3h) $Z H R=17.3$ <br> Local hour rate $=3$ Velocity $=42.0 \mathrm{~km} / \mathrm{s}$ (rather rapid) Radiant: RA=22.8h/342 ${ }^{\circ}$ Dec $=-15.7^{\circ}$ (J2000) (in constellation Aquarius/Aqr) |


| 5 | 4h23m59s | $\quad$Koronas <br> F Rocket$(\mathbf{2 6 8 7 4}$2001-032-B) <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| :---: | :---: | :---: | :---: |
| * | 4h | 代 Meteor | North Delta-Aquariids (NDA) Best seen from 22.7 h - $5.1 \mathrm{~h} \quad\left(\mathrm{~h}_{\mathrm{top}}=45^{\circ}\right.$ at S at 4.5h) ZHR=3.4 <br> Local hour rate $=1$ Velocity $=42.0 \mathrm{~km} / \mathrm{s}$ (rather rapid) Radiant: RA=23.0h/345 $\quad$ Dec $=0.6^{\circ}$ (J2000) (in constellation Pisces/Psc) |



|  |  | $\begin{aligned} & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$ |  | elevation of at Meridian $h: 31.4^{\circ}$ Disappears horizon | Sun: $-15^{\circ}$ 4h45m33s 4h54m53s | angular <br> 5.4mag <br> 6.9 mag | $\begin{aligned} & \text { velocity: } 0.12^{\circ} / \mathrm{s} \\ & \text { az:180.0 } \mathrm{S} \\ & \text { az:129.2 } 2^{\circ} \mathrm{SE} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (3) | 4h43m07s | $\frac{\text { Cosmos }}{\underline{\mathbf{1 2 2 0}}}$ <br> $\frac{\mathbf{1 2 0 5 4}}{\underline{\mathbf{1 9 8 0 - 0 8 9 - A )}}}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  | Appears <br> NW horizon <br> Culmination <br> WSW h:38.30 <br> distance: 689. <br> elevation of <br> Disappears <br> h:25.70 | 4h37m42s <br> 4h43m07s <br> .5 km heigh <br> Sun: -15 ${ }^{\circ}$ <br> 4h44m32s | 6.1 mag <br> 2.5 mag <br> ht above angular <br> 3.1mag | $\begin{aligned} & \text { az: } 317.6^{\circ} \\ & \text { az: } 240.7^{\circ} \end{aligned}$ <br> Earth: 449.0 km velocity: $0.660 / \mathrm{s}$ az:191.60 SSW |
| (3) | 4h46m32s | $\quad \frac{\text { Aureole 2 }}{\text { Rocket }}$$\frac{(07004}{\underline{1973-107-B)}}$$\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  | Appears <br> NNW horizon <br> Culmination <br> WSW $h: 36.7^{\circ}$ <br> distance: 583. <br> elevation of <br> Disappears <br> $\mathrm{h}: 34.0^{\circ}$ | 4h41m43s <br> 4h46m32s <br> .2 km heigh <br> Sun: $-15^{\circ}$ <br> 4h46m59s | 7.2 mag <br> 3.2 mag <br> t above angular <br> 3.2 mag | $a z: 331.2^{\circ}$ <br> $a z: 253.6^{\circ}$ <br> Earth: 365.5 km velocity: $0.79^{\circ} / \mathrm{s}$ az:229.30 SW |
| (3) | 4h46m33s |  |  | Appears <br> WSW h:20.6 ${ }^{\circ}$ <br> Culmination <br> NW $\quad h: 61.7^{\circ}$ <br> distance: 1009 <br> elevation of <br> at Meridian $\mathrm{h}: 51.8^{\circ}$ <br> Disappears <br> horizon | 4h42m42s <br> 4h46m33s <br> 9.5 km heig <br> Sun: $-15^{\circ}$ <br> 4h47m42s <br> 4h55m48s | 6.1 mag <br> 5.3mag <br> ght above angular 6.1mag <br> 12.1 mag | $\begin{aligned} & \mathrm{az}: 237.8^{\circ} \\ & \mathrm{az}: 313.8^{\circ} \\ & \text { Earth: } 905.3 \mathrm{~km} \\ & \text { velocity: } 0.42^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \mathrm{N} \\ & \mathrm{az}: 38.5^{\circ} \mathrm{NE} \end{aligned}$ |
| 5 | 4h54m12s | USA $\frac{120 / \text { NOSS 2-3C }}{(23908}$ $\frac{1996-029-C)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  | Appears <br> WSW h:18.1 ${ }^{\circ}$ <br> Culmination <br> NW $h: 55.6^{\circ}$ <br> distance: 1070 <br> elevation of <br> at Meridian <br> h: $45.7^{\circ}$ <br> Disappears <br> horizon | 4h50m04s <br> 4h54m12s <br> 0.8 km hei <br> Sun: -140 <br> 4h55m35s <br> 5h03m27s | 6.2 mag <br> 5.5 mag <br> ght above angular 6.4 mag <br> 12.2 mag | $\begin{aligned} & \mathrm{az}: 242.0^{\circ} \\ & \mathrm{az}: 315.7^{\circ} \\ & \text { Earth: } 909.0 \mathrm{~km} \\ & \text { velocity: } 0.40^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \mathrm{N} \\ & \mathrm{az}: 38.5^{\circ} \mathrm{NE} \end{aligned}$ |

18 Items/Events: Export to Outlook/iCal 回 Print
Used satellite data set is from 28 July 2012
$\square$ Hide glossary

## Glossary:

## Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

## Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

## at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

## Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.

## Best seen between / $\mathbf{h}_{\text {max }}$



This is the best visibility time interval of the object. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. $\mathrm{h}_{\max }$ is the maximum altitude over the horizon, that the object reaches during this time period.

## Close to Moon/Sun

The satellite is closer than 1.5 degrees from the center of the Moon or the Sun, but the satellite does not cross in front of the Moon/Sun. The direction and distance to the center line on Earth is given. For the Sun, move to the indicated center line position and observer with proper equipment. By no means observe the Sun without special filters!
Close to...
The Moon or main object appears close to the listed star or planet. These events may be useful for reasons of 'near miss' or to make it easier to find the fainter object in the sky. Usually, such constellations give a nice view.

## Clock-face Direction

In a simple clock-face coordinate system with the clock face superimposed on the satellite itself, with 12:00 o'clock being at the top and 9:00 o'clock being at the left, the satellite will seem to move toward the given direction. This number is helpful when observing with binoculars.

## Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is $90^{\circ}$ north.

## Delta

Distance of the celestial body from Earth in Astronomical Units (AU). For the Moon, Delta is the topocentric distance of the Moons mass center from the observer in Earth radii (ER). It is also the fourth letter in Greek alphabet.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Elongation

The elongation is the angular separation of the (ecliptic) longitudes of a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

## J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\ Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

## Position Angle rel. Vertex

Angle, defining a position on an apparent disk. It is counted around the reference points (center of disk) from local up, zenith direction $0^{\circ}$ to east (left) $90^{\circ}$, south $180^{\circ}$ to west (right) $270^{\circ}$ in counter clockwise direction.

## Position Angle / PA

Angle, defining a position on an apparent disk or the position of a dimmer star with regard of the main star. It is counted around the reference points (center of disk/brighter star) from celestial north direction $0^{\circ}$ to east (left) $90^{\circ}$, south $180^{\circ}$ to west (right) $270^{\circ}$ in counter clockwise direction.

## R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.
Radiant
Due to perspective, the meteors from a stream seem to originate from one point on the celestial sphere. This point is called radiant.

## Remarks

These calculations are based on mean observed radiants and rates. For exceptional outbursts, these special predictions will be included as well.

## Separation

Angular distance between the centers of disks of two objects. For eclipses: the Sun and the Moon. For occultations: Moon/satellite and Star/Planet. For binary stars: Star/Star

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$.)

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by $S$ or -. The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

## ZHR

Zenith Hour Rate. This is a number for the current or estimated activity of a meteor stream:
the number is the hypothetical number of meteors in the sky for an observer with the radiant in the zenith and a limiting magnitude of 6.5 m .

## Top

This material is © 1998-2012 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 03 September 2012
Database updated 26 min ago
Current Users: 182

11 Sep 2012, 14:00 UTC
12 minutes left for this session


